
Leveraging host based Flash Translation
Layer for Application Acceleration

Ashish Batwara

Fusion-io

Flash Memory Summit 2012

Santa Clara, CA 1

Traditional Storage Stack

Flash Memory Summit 2012

Santa Clara, CA 2

Block Device Driver

LBA

Device

LBA view enforced by Storage
Protocols (SCSI/SATA etc.)

Hardware

Kernel
space

User
space Application

Filesystem

Flash is Different From Disk

Flash Memory Summit 2012

Santa Clara, CA 3

Area Hard Disk Drives Flash Devices

Logical to Physical Blocks Nearly 1:1 Mapping Remapped at every write

Read/Write Performance Largely symmetrical
Heavily asymmetrical.

Additional operation (erase)

Sequential vs Random

Performance

100x difference. Elevator

scheduling for disk arm

<10x difference.

No disk arm – NAND die

Background operations Rarely impact foreground
Regular occurrence. If unmanaged -

can impact foreground

Wear out Largely unlimited writes Limited writes

IOPS 100s to 1000s 100Ks to Millions

Latency 10s ms 10s-100s us

TRIM Do not benefit Improve performance

Flash Memory Summit 2012

Santa Clara, CA 4

Flash Translation Layer

Input

Logical Block Address (LBA)

Output

Commands to NAND flash

Flash Translation Layer 101

Flash Memory Summit 2012

Santa Clara, CA 5

Block Device Driver

LBA

Kernel
space

User
space Application

Flash Translation Layer

LBA → PBA

Filesystem

Device

Hardware

Flash in Traditional Storage Stacks

Flash as a New Host Based
Architecture

Flash Memory Summit 2012

Santa Clara, CA 6

Block Device Driver

Kernel
space

User
space Application

Flash Translation Layer

Virtually Addressing LBA → PBA

Filesystem

DeviceHardware

Fast Forward

Flash Memory Summit 2012

Santa Clara, CA 7

• Host-based FTLs integrate and scale with

applications, examples include

– File Systems

– Caching

– Databases

• Power of FTL no longer restricted by traditional block

interfaces

• Opportunity for performance, simplicity and reliability

improvements

Virtual Storage Layer
®

(VSL
tm

)

• VSL
tm

– Fusion-io’s host based FTL

• Cut-thru architecture –

avoids traditional storage protocols

• Scales with multi-core

• Provide a large virtual address space

• HW/SW functional boundary

defined as optimal for flash

• Traditional block access methods for

compatibility

• New access methods, functionality

and primitives natively supported by

flash

Flash Memory Summit 2012

Santa Clara, CA 8

PCIe

DRAM /

Memory /

Operating System and

Application Memory

DRAM /

Memory /

Operating System and

Application Memory io
M

e
m

o
ry

V
ir

tu
a

liz
a

ti
o

n

T
a

b
le

s

Channels Wide
B

a
n
k
s

ioDrive ioMemory
®

Data-Path

Controller

Commands

Host

Virtual Storage Layer
®

(VSL
tm

)

Virtual Storage Layer
®

(VSL
tm

)

D
A

T
A

T
R

A
N

S
F

E
R

S

CPU and cores

Software Defined Interfaces to Storage

Flash Memory Summit 2012

Santa Clara, CA 9

Traditional Storage Appliance

Proprietary Storage OS

Simple
Block

Network
File

Storage Media

Virtual Storage Layer
®

Simple
Block

Transactional
Block

Key-Value
Pair

Native
File

Auto-
Commit

Memory™

Software Defined Interfaces to StorageFixed Interfaces to Storage

Storage Media

Software Defined Storage

Shared
Target

Flash Memory Evolution

Flash Memory Summit 2012

Santa Clara, CA 10

Legacy SSDs Flash as a drive Flash as a cache
Flash with direct I/O

semantics
Flash with

memory semantics

A
p

p
li

ca
ti

o
n

Application

A
p

p
li

ca
ti

o
n

Application Application Application Application

Open Source
Extensions

Open Source
Extensions

OS Block I/O OS Block I/O OS Block I/O

Direct-access I/O
API Family

Memory Semantics
API Family

H
o

stH
o

st

File System File System File System
directFS –
native file

system service
directFS

VSL
tm

Block Layer
Block Layer Block Layer

SAS/SATA

Network

VSL
tm

directCache

VSL
tm

VSL
tm

R
e

m
o

te

RAID Controller

VSL
tm

Flash Layer

Read/Write Read/Write Read/Write Read/Write Read/Write Load/Store

Native Access|

Legacy SSDs Flash as a drive Flash as a cache
Flash with direct I/O

semantics
Flash with

memory semantics

A
p

p
li

ca
ti

o
n

Application

A
p

p
li

ca
ti

o
n

Application Application Application Application

Open Source
Extensions

Open Source
Extensions

OS Block I/O OS Block I/O OS Block I/O

Direct-access I/O
API Family

Memory Semantics
API Family

H
o

stH
o

st

File System File System File System
directFS –
native file

system service
directFS

VSL

Block Layer
Block Layer Block Layer

SAS/SATA

Network

VSL

directCache

VSL
tm

VSL

R
e

m
o

te

RAID Controller

VSL
Flash Layer

Read/Write Read/Write Read/Write Read/Write Read/Write Load/Store

Direct I/O Semantics

Flash Memory Summit 2012

Santa Clara, CA 11

Native Access|

� direct I/O Primitives

• Atomic Operations

• Sparse Address Space

• Exists

� direct Key-Value Store

• NVM optimized with transactional

semantics

� direct FS

• Near Posix compliant FS

implemented natively on flash

� directCache

• Flash as a cache

Transactional Block Interface

Flash Memory Summit 2012

Santa Clara, CA 12

Transaction Envelopes

Write all blocks atomically

Virtual Storage Layer
®

Application issues call to transactional block interface

XX XX

iov[0] iov[1] iov[2] iov[3] iov[4]

XX XX XX

XX XX

XX XX XX XX
LBA 68 + offset

LBA 42 + offset

LBA 24 + offset

LBA 7 + offset

Trim all blocks atomically

XX XX

XX XX XX
LBA 24 + offset

LBA 7 + offset

iov[3] iov[4]

Write and Trim atomically

Atomic Micro-Benchmark –
Sample Performance

Flash Memory Summit 2012

Santa Clara, CA 13

0

2000

4000

6000

8000

10000

0 20 40 60 80

IO
P

S

Threads

Atomic/Non-atomics 128K

atomics 128K

fio 128K

0

10000

20000

30000

40000

50000

60000

0 20 40 60 80

IO
P

S

Threads

Atomic/Non-atomics 16K

atomics 16K

fio 16K

0

20000

40000

60000

80000

100000

120000

0 20 40 60 80

IO
P

S

Threads

Atomic/Non-atomics 1K

atomics 1K

fio 1k

0

20000

40000

60000

80000

100000

120000

0 20 40 60 80

IO
P

S

Threads

Atomic/Non-atomics 4K

atomics 4K

fio 4K

1U HP blade server with 16 GB RAM, 8 CPU cores - Intel(R) Xeon(R) CPU X5472 @ 3.00GHz with single 1.2 TB ioDrive2 mono

Significantly more functionality with NO additional performance impact

Sysbench Performance With
Atomic-Write

Flash Memory Summit 2012

Santa Clara, CA 14

MySQL extension for Atomic-Write

43%

TRANSACTIONS/S

EC INCREASE

2x

ENDURANCE

INCREASE

½
95 PERCENTILE

LATENCY REDUCTION

• Processor: Xeon X5472 @ 3.00GHz
• DRAM: 16GB DDR3 4x4GB DIMMs
• OS: Fedora 14 – Linux kernel 2.6.35
• Sysbench config: 1 million inserts in 8, 2-million-entry tables, using 16 threads

Open Source Enabling and
Standardization

• MySQL InnoDB extension (GPLv2)

• Standardization of primitives in T10

Current standards proposal – Atomic Writes

• SBC-4 SPC-5 Atomic-Write

http://www.t10.org/cgi-bin/ac.pl?t=d&f=11-229r5.pdf

• SBC-4 SPC-5 Scattered writes, optionally atomic

http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-086r3.pdf

• SBC-4 SPC-5 Gathered reads, optionally

atomichttp://www.t10.org/cgi-bin/ac.pl?t=d&f=12-087r3.pdf

Flash Memory Summit 2012

Santa Clara, CA 15

Sparse Addressing Using Example

Flash Memory Summit 2012

Santa Clara, CA 16

Application

Cache:
HDD block -> Flash block + Presence Data

Flash
FTL: LBA -> PBA

Backing Store
Block Device

Conventional Block Cache

Cache
Hit

Cache
Miss

Application

VSL Based Cache:
Minimal Fixed Metadata

VSL
Sparse HDD LBA -> PBA

Backing Store
Block Device

VSL Based Cache

Cache
Miss

Cache Hit -
Just a Memory Lookup

Direct Key-Value Interface

Flash Memory Summit 2012

Santa Clara, CA 17

Application

KV Store – Key -> block mapping
(overhead per key) block allocation,

persistence mechanisms,
logging, recovery, etc.

VSL – Dynamic provisioning,
Block allocation, logging etc.

Block

Read/Write

Conventional KV store

Application

directFS

VSL – Dynamic provisioning,
Block allocation, logging etc.

Key Value API and Library
Fixed “zero” metadata, leverages VSL

DirectKey-Value store

Atomic write/delete,

coordinated garbage collection

Directkey-Value Store –
Sample Performance

Flash Memory Summit 2012

Santa Clara, CA 18

0

20000

40000

60000

80000

100000

120000

140000

0 20 40 60 80 100 120 140

G
E

T
s/

s

Threads

Sample Performance - GET

512B

4KB

16KB

64KB

0

20000

40000

60000

80000

100000

120000

0 20 40 60 80 100 120 140

P
U

T
s/

s

Threads

Sample Performance - PUT

512B

4KB

16KB

64KB

0

20000

40000

60000

80000

100000

120000

140000

0 20 40 60 80

O
P
S
/s

Threads

Performane rela ve to ioDrive

512B Key GET

1KB FIO READ

0

20000

40000

60000

80000

100000

120000

0 10 20 30 40 50 60 70

O
P
S
/s

Threads

Performance rela ve to ioDrive

512B Key PUT

1K-FIO WRITE

Sample Performance - GET

Performance relative to ioDrive

Sample Performance - PUT

Performance relative to ioDrive

1U HP blade server with 16 GB RAM, 8 CPU cores - Intel(R) Xeon(R) CPU X5472 @ 3.00GHz with single 1.2 TB ioDrive2 mono

Significantly more functionality with NO additional performance impact

DirectFS – Native File Services Layer

Flash Memory Summit 2012

Santa Clara, CA 19

Application

DirectFS – Namespace

File/Offset ->Sparse Address

VSL – Dynamic provisioning,

Block allocation, logging etc.

Lookup:
exists()

atomic
write()

Atomic
delete
(PTRIM)

Memory-Access Semantics

Flash Memory Summit 2012

Santa Clara, CA 20

Legacy SSDs Flash as a drive Flash as a cache
Flash with direct I/O

semantics
Flash with

memory semantics

A
p

p
li

ca
ti

o
n

Application

A
p

p
li

ca
ti

o
n

Application Application Application Application

Open Source
Extensions

Open Source
Extensions

OS Block I/O OS Block I/O OS Block I/O

Direct-access I/O
API Family

Memory Semantics
API Family

H
o

stH
o

st

File System File System File System
directFS –
native file

system service
directFS

VSL

Block Layer
Block Layer Block Layer

SAS/SATA

Network

VSL

directCache

VSL VSL

R
e

m
o

te

RAID Controller

VSL
Flash Layer

Read/Write Read/Write Read/Write Read/Write Read/Write Load/Store

Extended

Memory

Volatile Transparently extends

DRAM onto flash,

extending application

virtual memory

Checkpointed

Memory

Volatile with non-

volatile checkpoints

Region of application

virtual memory which

can be persisted to

named file on flash

Auto-Commit

Memory
tm

Non-volatile Region of application

memory automatically

persisted to flash and

recoverable post-

system failure

Extended Memory - Overview

Flash Memory Summit 2012

Santa Clara, CA 21

Flash as memorySystem Memory Extended Memory Mechanism

• Layered under existing memory

allocation services

(malloc(), mmap(), etc.)

• Uses existing memory page

pinning and prioritization services

(mlock(), madvise(), etc.)

• Leverages OS kernel page usage

statistics to determine page

eviction policies

Extended Memory – API Library

Flash Memory Summit 2012

Santa Clara, CA 22

Extended Memory

Memory Allocation
Libraries (malloc etc)

VSL

Flash
Device

Application

Application sees very
large datasets as 100%
‘in-memory’

DRAM

E
x
te

n
d
e
d
 M

e
m

o
ry

User space

Kernel space

Simple Database Example

Flash Memory Summit 2012

Santa Clara, CA 23

T
P

M
C

0

4,000

8,000

12,000

16,000

20,000

24,000

28,000

32,000

36,000

40,000

4 G B D R A M ,
D B O N D I S K

4 G B D R A M ,
O S S W A P T O F L A S H

4 G B D R A M ,
E X T E N D E D M E M O R Y T O

F L A S H

4 0 G B D R A M ,
D B 1 0 0 % I N D R A M

Percona MySQL 5.5 TPC-C

Flash as Extended Memory achieves 30%

performance of 100% in-DRAM solution …

… with up to 90% reduction in system TCO,

and 95% less power consumption

when extrapolated to larger systems.

Not all data in in-memory datasets needs to be

accessed at DRAM speeds!

24 core Xeon, 140G Fusion-io NAND-flash, 40G DB size

Checkpointed Memory Persistence Path

1. Application designates virtual address space range to be checkpointed

a. Causes creation of independently-addressable linked clone of the

checkpointed address range (no data moves or copies)

b. Checkpoint appears as addressable file in the directFS

native filesystem namespace.

2. Application can continue manipulating contents of designated virtual

address range without affecting contents of persisted checkpoint file.

3. Application can load or manipulate persisted checkpoint file at a later

time

Flash Memory Summit 2012

Santa Clara, CA 24

Flash as memorySystem Memory
Extended Memory Mechanism

Auto-Commit Memory
tm

Persistence Path

Flash Memory Summit 2012

Santa Clara, CA 25

Conventional I/O Auto-Commit Memory

ACM

Auto-Commit Memory
tm

– API Library

Flash Memory Summit 2012

Santa Clara, CA 26

ACM Primitives Library

ACM Persistent Data
Structures Library

VSL

Flash
Device

Application

User space

Kernel space

Application commits data
through standard memory-
access semantics and
operations

Auto-commit
Memory

Billion IOPS Demo in January 2012 –
ACM with 64 ioDrives, 8 HP servers

Conclusion

Flash Memory Summit 2012

Santa Clara, CA 27

Host based FTL

1. Helps accelerating applications

2. Eliminates redundant functionality

3. Leverages FTL mapping and sparse addressing

4. Optimizes garbage collection

5. Delivers transactional properties

6. Provides direct I/O as well as memory semantics.

Thank you!

Ashish Batwara

Fusion-io

abatwara@fusionio.com

Flash Memory Summit 2012

Santa Clara, CA 28

Direct I/O Primitives – Sparse
Address Space

• A capability of the Virtual Storage Layer
®

• Capacity dynamically allocated upon write

• LBA address space size can be far larger than

actual capacity

• Capability is extended to upstream software via the

sparse address space

• Higher level software usage via primitives

• Supports conventional block usages while enabling

new usages in cache, file systems, etc.

Flash Memory Summit 2012

Santa Clara, CA 29

Direct I/O Primitives – Persistent
Trim and Exists

Persistent TRIM (Virtual Address)

• Has all the positive properties of TRIM

• Improves wear leveling

• Improves write performance

• However – well defined with respect to failures

• Deterministic return of zeros for read

• Survives power failures

EXISTS (Virtual Address)

• Query the existence of a particular element

• Enables sparse stores with well defined “presence”
semantics

Flash Memory Summit 2012

Santa Clara, CA 30

