
Critical Role of Firmware and Flash
Translation Layers in Solid State Drive

Design

Robert Sykes

Director of Applications

OCZ Technology
Flash Memory Summit 2012
Santa Clara, CA

1

 This talk will describe the requirements of
the design of an SSD controller and the
firmware that implements its Flash
Translation Layer (FTL). Data integrity,
longevity and performance must be
maintained while dealing with host
interaction (AHCI SATA and Operating
System), garbage collection and wear
levelling.

Introduction

• Flash Translation Layer (FTL)
• Operating system and associated SATA

drivers.
• Wear levelling and Garbage collection
• Performance and Robustness

Contents

• Flash Translation Layer (FTL)
• Operating system and associated SATA

drivers.
• Wear levelling and Garbage collection
• Performance and Robustness

Contents

• Flash Translation Layer (FTL)
• Operating system and associated SATA

drivers.
• Wear levelling and Garbage collection
• Performance and Robustness

Contents

• Flash Translation Layer (FTL)
• Operating system and associated SATA

drivers.
• Wear levelling and Garbage collection
• Performance and Robustness

Contents

Flash Translation Layer

 What is it, and why do we need a Flash Translation Layer (FTL)?

• SSD’s require a mapping between the LBA and physical media

• In order to write to an area in the physical media it must be erased
on a block basis.

• Writes to the same LBA will be mapped to different physical
locations on the flash media.

• SSDs need to move data around.

– To ensure that the SSD is evenly worn to prolong the life of the SSD
(Wear Leveling) or Data Stirring.

– Reclaim blocks previously deleted by the OS so that a new write will
not have to do a read / modify / write therefore ensure peak
performance is maintained (Garbage Collection).

– Bad Block Management to handle invalid blocks.
– Error correction

• The FTL is responsible for the logical to physical mapping of data!

FTL

 How does it work?
• Host PC’s expect to access a HDD (LBA device).

– HDD’s are constructed of sectors.
– This is usually 512B or 4KB (usually emulated back

to 512B)
–SSD’s are constructed of planes, blocks and

pages.
–FTL therefore translates a sector access into a

page or block access.
– Metadata is used to map the logical to physical

address.

 If only it were that simple !

FTL

 HDD and Flash Basics:

• HDD vs SSD configuration.

– HDD
– Made up of sectors.

» Sector is 512B (maybe 4KB with 512B emulation)
– SSD

– 1 Page = (8 KB + 512B)
– 1 Block = (8 KB + 512B) * 128 pages (Note: block may contain up to 256 pages)

» = (1 MB + 64 KB)
– 1 Plane = (1 MB + 64 KB) * 4096 blocks

» = (4 GB + 256 MB)
– 1 Die = (4 GB + 256 MB) * 2 Planes

» = (8 GB + 512 MB
– 1 Bank = (8 GB + 512 MB) * 2 dies

» = (16 GB + 1 GB)
– 1 Device = (16 GB + 1 GB) * 64 banks

» = (1TB + 64GB)

– Windows file system Reads / Writes 4KB (i.e. 8 sectors) at a
time.
– If formatting, Windows uses 512B.

FTL

 Pages
• Smallest addressable unit for read and

program operations
• The ‘Spare Data’ is used for storing ECC

parity data and marking the page as bad.

FTL

8192 bytes

Spare Data User Data

512B

• Note: The size of the spare area is
dependant on the device.

 Blocks
• Smallest erasable unit of data
• There are generally 128 or 256 pages per block.
• Pages within a block must be written sequentially but

can be read in any order

FTL

Page 0

Block

Page 1

Page 2

Page 127

 Die
• A die may contain up to 4 planes.
• Planes have Page Registers and Cache Registers for shifting in and out data.
• Registers hold data for Flash array operations (read/program)
• Multiple planes, typically 2 or 4

FTL

Plane 0

Block
0

Block
2

Block
n

Plane 1

Block
1

Block
3

Block
n+1

Die

Page
Register

Page
Register

Data
I/O

Plane

Block 0

Block 1

Block n

Page
Register

 Page Addressing
• Flash controllers use a Row and Column addressing

scheme.
• Column

– 2 byte field identifying the byte offset within a page.
• Row

– 3 byte field identifying the page address.

FTL

Block Offset Page Offset

Interleaved Plane
Address Bit

MSB LSB

FTL

 Back to FTL…..
• Each host file system access to the device must write a

minimum of 4Kbytes of data (Assuming Win7).
• NAND can only write a page or simultaneous pages at a

time (e.g. 8K * 2 = 16KB (25nm) and <20nm moves to
16K*2 = 32K
– Of course this depends on device manufacturer, not all

will migrate to larger pages.

As we are now writing to a page and not a sector we must

create a map of the address the host thinks its written to
(based on sectors) and the address the NAND controller
has actually written the data to.

 What factors will effect the FTL design?
• Your FTL architecture should take into

account the environment its operating in.
–What size of commands will the FTL have

to cope with.
– Consider size of metadata?

–Consider how to ensure system robustness.
– FTL must cope with power failure

» FTL rebuild
– FTL must cope with FLASH operations outside

of host accesses.
» Garbage collection, BBM, IPM, PM.

FTL

 Basic FTL Firmware architecture
(Jasmine)

FTL

NAND

DDR FTL
Ata_Cmd(lba, sectors)

lpage vpage

Get_vpage_addr(lpage)

FCP_CMD(col, row, byteCount)

Page Mapping Table

0
Bank:0
Block:4
Page:47

1
Bank:62

Block:3100
Page:108

2
Bank:1

Block:25
Page:14

HAL

FTL

Host

Buffer Manager
SATA Transfer

FTL / BBM /WL

NCQ Command
Queue

NAND

HIL FTL FIL

DRAM

Event
Queue

Host

Buffer Manager
SATA Transfer

FTL / BBM /WL

NCQ Command
Queue

NAND

HIL FTL FIL

DRAM

Event
Queue

Host sends a write command

FTL

FTL

Host

Buffer Manager
SATA Transfer

FTL / BBM /WL

NCQ Command
Queue

NAND

HIL FTL FIL

DRAM

Event
Queue

Command is put into the queue

FTL

Host

Buffer Manager
SATA Transfer

FTL / BBM /WL

NCQ Command
Queue

NAND

HIL FTL FIL

DRAM

Event
Queue

Buffer manager processes the command.

FTL

Host

Buffer Manager
SATA Transfer

FTL / BBM /WL

NCQ Command
Queue

NAND

HIL FTL FIL

DRAM

Event
Queue

Puts the command into the event queue for processing.

FTL

Host

Buffer Manager
SATA Transfer

FTL / BBM /WL

NCQ Command
Queue

NAND

HIL FTL FIL

DRAM

Event
Queue

The commands address (LBA) is now mapped to the physical
address in NAND and temporally stored in DRAM.

FTL

LPA AA

LPA BB

16KB

P1

P2

Logical to physical
mapping table

Plane 0 Plane 1

AA

BB

P1 LPA AA (16KB)
LPA BB (16KB) P2

16KB page
mapping

DRAM NAND

*Logical Page
Address

512B
sector

512B
sector … 512B

sector

16KB(8KB)
page

FTL

Host

Buffer Manager
SATA Transfer

FTL / BBM /WL

NCQ Command
Queue

NAND

HIL FTL FIL

DRAM

Event
Queue

Data is now committed to the NAND

 Well…… we didn’t really just commit the data
to the NAND!
• We actually did some wear leveling first.
• We need to do this so that the data written to the

NAND is spread across the NANDs so that we
don’t inadvertently write to the same bank over
and over and inadvertently wear out a bank
relative to others.

• The FTL shouldn’t just map logical to physical. It
has to send data to different parts of the NAND
and of course know where the data is at all times.

FTL

 Not done quite yet!
• We cant just write wear leveled data to the NAND.
• To ensure the longevity of the NAND the data must

first be scrambled (Scrambler is at the hardware
level).
– Scrambler can be either on NAND or part of the

controller logic.
– Scrambler is used to ensure data written has an even bit

distribution.
» Retention errors
» Adjacent cells may have been disturbed from weak

charge on floating gate.

Firmware

 Now we have committed data to the NAND
we still have some work to do.
• We need to write the updated metadata to the

NAND.
– If we don’t, and power is lost, the metadata

mapping table is lost and thus the data written
on the NAND will not be accessible to the OS.

–We don’t want to write the complete metadata
table at the end of each command. This would
hamper performance. Better would be to write
the change in metadata at the end of a
command and commit the full table at
predefined intervals.

Firmware

 Factors effecting the FTL
• Host interaction (AHCI SATA, Operating

System and drivers)
• Garbage collection and Wear Levelling

–Significantly stress the SSD device,
therefore the overall design of the SSD
firmware and the FTL architecture play an
import role in ensuring data integrity and
the longevity of the device whilst still
maintaining performance.
– If data is moved around the NAND devices the

FTL needs to track it in the metadata.

FTL

• Operating System and
Associated Driver

 First we need to consider the environment
we are working in.
• Laptop / Desktop environment.

–The SSD makes up part of the system and
most likely connects to one of the onboard
host SATA ports.

–Data across the SATA bus will be
dependant on the OS file system and
device driver.

OS & Driver

OS & Driver

User Mode

Kernel Mode

Applications

SSD / HDD

Virtual memory / Security
/ Graphics etc….

Ethernet Card

DLLs System Service Log on

HAL

External Devices

IO Manager

File System

Network Drivers

Device Drivers
MicroKernel

• Overview: Operating System

OS & Driver

User Mode

Kernel Mode

Applications

SSD / HDD

Virtual memory / Security
/ Graphics etc….

Ethernet Card

DLLs System Service Log on

HAL

External Devices

IO Manager

File System

Network Drivers

Device Drivers
MicroKernel

• Overview: Operating System

File System and Device
Driver are responsible for the

data sent over the SATA
interface

 File System
• Windows 7 file system smallest command is 4KB.

– When formatting a disk 512B commands will be
used.

• Windows XP file system smallest command is 512B.
 Drivers

• Different drivers will send different command sizes.
– E.g. if the host is to send a continuous 10MB

command, some drivers may break that down into
1MB chunks, others will use 128KB chunks.

– All this has an impact on the FTL and thus the
SSDs performance and reliability capability as the
combination of hardware and software controlled
buffers along with the FTL have to be capable of
dealing with different file sizes.

OS & Driver

 Why is the OS and associated drivers
important to consider when designing a SSD
controller and its firmware?

• Different command sizes impact how the

firmware buffers and then sends data to the
NAND. Most of the NAND today is either 16K
(2*8K (2 plane mode)) or single 8K page (latest
NANDs 32K) , we can therefore make decisions
in firmware as to how we want to commit data to
the NAND based on the commands size from the
host and the page size we are writing to.
–This will impact the overall performance of the

system!

OS & Driver

OS & Driver

• In the old days of NAND, each page was sector
aligned (512B) so the process of writing to the NAND
was significantly simplified. As NAND technology has
progressed, NAND page sizes and total densities
have increased and as a result so has the page size.

• Ideally we would have an FTL that was still sector

aligned (512B) for best performance with small
commands but this would cause problems with
storing the metadata and would most likely require
DDR at a size that would be cost prohibitive.
– 512B page mapped FTL for a 128G disk would

require 512MB DDR, 512GB disk would require 2G
of DDR.

 The Calculations:
• If Page mapped FTL is used then:

–For 16K page there would be one entry for
each 16K
– One entry is ~4B. I.e. for each 16K page written

4B of metadata must be stored in DDR.
– For a 256GB drive with 16K page NAND:

» (256G / 16K) *4B = 64MB
– For a 256GB drive with 8K page NAND:

» (256G / 8K) *4B = 128MB

OS & Driver

 Performance.
• We now have some complex algorithms.

–FTL
–Garbage Collection
–Wear Levelling

• How is the best in class performance
achieved.
–With a very intimate knowledge of the

system.

OS & Driver

Garbage Collection

 What is Garbage Collection?
• Garbage Collection is the process of freeing

up partially filled blocks to make room for
more data.

Garbage Collection

Erased

Valid Free

After pages are written
to the erased block

After valid pages are copied over to other blocks
and the mapping table updated.

After erasing block with unmapped
data

Garbage Collection

Valid

Garbage

Erased

Garbage Collection

Valid

Garbage

Erased

Garbage Collection

Valid

Garbage

Erased

Garbage Collection

Valid

Garbage

Erased

Garbage Collection

Valid

Garbage

Erased

Garbage Collection

Valid

Garbage

Erased

Garbage Collection

Valid

Garbage

Erased

Garbage Collection

Valid

Garbage

Erased

Garbage Collection

Valid

Garbage

Erased

Garbage Collection

Valid

Garbage

Erased

Valid

Garbage

Erased

Garbage Collection

Valid

Garbage

Erased

Garbage Collection

Valid

Garbage

Erased

Garbage Collection

Valid

Garbage

Erased

Garbage Collection

Valid

Garbage

Erased

Garbage Collection

 Is there a faster way to move the data?
• Inter-flash chip copy

–Copy back may be problematic as you can’t
use this feature for multi die operations.

–Read out the data from the flash and
program it into flash through ECC HW.

Garbage Collection

Wear Levelling

 Flashes have a limited life span which is measured by its

Program / Erase Cycle count. Beyond this limit, the data
integrity starts degrading.

 Wear Leveling ensures that the firmware evenly distributes
the writes throughout the flash.

 Wear Leveling techniques extends the life of SSDs.

Wear Levelling

 Wear Levelling Techniques:
• Dynamic Wear Leveling

– Involves monitoring the erase counts of blocks from a
pool of ‘data free’ blocks and selecting the block with
the lowest number of erases for the next write
operation.

• Static Wear Leveling

– Identifies partially filled blocks whose data has
remained static for some time and whose erase count is
substantially lower compared to other blocks.

– This block is freed up of its static data so that this block
is available for future write.

Wear Levelling

Performance and
Robustness

 Performance
• Factors effecting performance:

– Inadequate FTL architecture.
– FTL and associated buffers are not adequately designed for

the amount of data coming from the host.
– Adding garbage collection can dramatically reduce

performance. If garbage collection is executed during a
command sequence this will reduce performance.
– Running garbage collection during idle periods maybe the

easiest way of maintaining performance during busy periods.
– System inadequacies.

– Firmware Bottlenecks in command processing.
– Inadequate buffer allocation.
– Processor speed.

• Understanding these constraints and having an
architecture that reduces and works around these system
inadequacies will greatly improve performance.

Performance and Robustness

 Robustness.
• We have gone through several firmware paths

that are susceptible to error.
–FTL

– Garbage Collection
– Wear Levelling
– Scrambling

–OS interaction
– Different command sizes
– IPM (Interface Power Management) (HIPM &

DIPM)
– Device Power Management

Performance and Robustness

 Ensuring stability across these areas requires
a test strategy that can fully stress the
system, focusing on the areas above.
• Easy tests to run.

–Long soaks. Will the firmware run for days
without error.

–Testing to specification. Does the SSD meet
ATA specifications / ONFI specifications.

• Complex testing
–Can only be done with an intermit

understanding of the system.
– Looking for bugs wont always work, sometime

specific equipment is required to uncover the most
difficult issues.

Performance and Robustness

Thank You!

	Critical Role of Firmware and Flash Translation Layers in Solid State Drive Design
	Introduction
	Contents
	Contents
	Contents
	Contents
	Slide Number 7
	FTL
	FTL
	FTL
	FTL
	FTL
	FTL
	FTL
	FTL
	FTL
	FTL
	FTL
	FTL
	FTL
	FTL
	FTL
	FTL
	FTL
	FTL
	FTL
	Firmware
	Firmware
	FTL
	Slide Number 30
	OS & Driver
	OS & Driver
	OS & Driver
	OS & Driver
	OS & Driver
	OS & Driver
	OS & Driver
	OS & Driver
	Slide Number 39
	Garbage Collection
	Garbage Collection
	Garbage Collection
	Garbage Collection
	Garbage Collection
	Garbage Collection
	Garbage Collection
	Garbage Collection
	Garbage Collection
	Garbage Collection
	Garbage Collection
	Slide Number 51
	Garbage Collection
	Garbage Collection
	Garbage Collection
	Garbage Collection
	Garbage Collection
	Garbage Collection
	Slide Number 58
	Wear Levelling
	Wear Levelling
	Slide Number 61
	Performance and Robustness
	Performance and Robustness
	Performance and Robustness
	Slide Number 65

