

SSD Architecture for Consistent Enterprise Performance

Gary Tressler and Tom Griffin IBM Corporation

August 21, 2012

SSD Architecture for Consistent Enterprise Performance - Overview

Background:

- Client feedback indicates that traditional approach to managing SSD operations and maintenance activities concurrently is <u>no longer acceptable</u> (e.g., minimizing avg. maximum response per interval)
 - Enterprise users beginning to pursue 24/7/365 SSD-driven business operations response time interruptions not tolerable throughout SSD lifetime

• New Approach:

- SSD must provide consistent performance over its designated life span
- All SSD maintenance activities must be managed in background
- SSD performance may need to be sacrificed to a limited extent to achieve these goals

SSD Architecture for Consistent Enterprise Performance - Overview

Examples of Required Enterprise SSD Operation Profile

• **Background operations** should be performed continuously, and require a consistent level of throughput, or always done in low priority (never consuming an appreciable amount of host bandwidth)

• No background task should take high priority if sufficient idle time not available

• Relocation algorithms due to read disturb mitigation and wear leveling must operate consistently and constantly and should not result in large spikes or dips in host performance

- Any power backup circuit check (e.g., capacitance monitoring) cannot ever stall the host
- Garbage collection and free space reclamation should be managed in such a way that critical limits in free resources that will likely result in large stalls or host performance dips are not reached
- ECC correction circuitry must have sufficient bandwidth to maintain performance with increased need to correct sectors as SSD ages

• Must ensure that **mixed read and write workloads** do not dip below IOPs level that 100% reads or 100% writes can achieve

- e.g., reads should not be gated behind large writes
- Must be mindful of performance differences resulting from **workload changes** depending on level of preconditioning
- All types of software locks should be done in such a way to minimize stalls to specific I/O

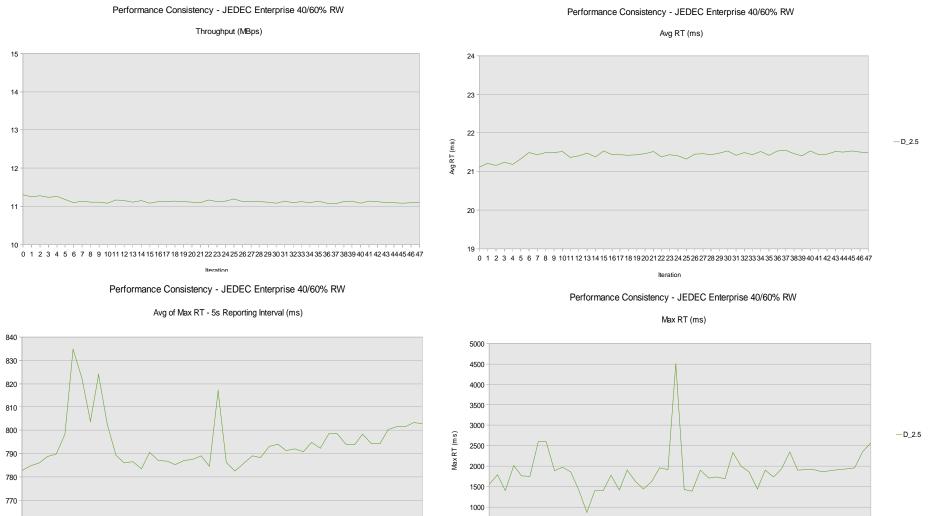
Performance Consistency Characterization Experiment #1

JEDEC Enterprise Workload

- 3 random workloads
 - Transfer size mix
 - 512B (4%)
 - 1KB (1%)
 - 1.5KB (1%)
 - 2KB (1%)
 - 2.5KB (1%)
 - 3KB (1%)
 - 3.5KB (1%)
 - 4KB (67%)
 - 8KB (10%)
 - 16KB (7%)
 - 32KB (3%)
 - 64KB (3%)
 - Max. I/O rate, QD = 32, incompressible data
 - 5s measurement intervals
 - Workload mix:
 - #1 (50% overall workload skew, 5% drive range)
 - #2 (30% overall workload skew, 15% drive range)
 - #3 (20% overall workload skew, 80% drive range)

Testing

- Continuous iteration of above workload as follows:
 - 8-hour run at 100% write
 - 8-hour run at 40/60% RW mix (defined JEDEC Enterprise workload)
- Initial 24-hr. preconditioning with JEDEC Enterprise workload (100% write)


Flash Memory Summit 2012 Santa Clara, CA

Characterization	Environment

- PC-based
- Windows 7
- LSI HBA
- Various Enterprise SSDs
 - SAS, SATA
 - 2.5" SFF, 1.8" SFF
 - Different capacities

<u>Note:</u> Average Maximum Latency (AvgMaxRT_5sInt) = the average of the maximum latencies reported by exerciser where each maximum latency is recorded at a 5s interval

MBps

AvgMaxRT_5s Int (ms)

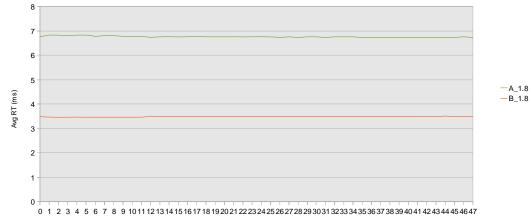
760

750

• Entry enterprise SSD demonstrates fairly even throughput and avg. latency, but avg. max. and max. latencies are poor and degrading Santa Clara, CA

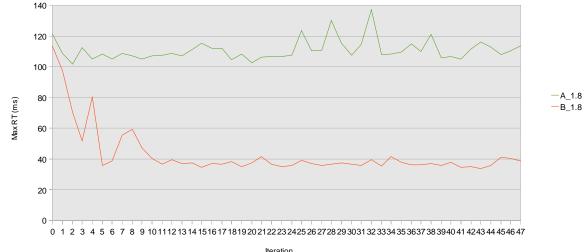
500

0

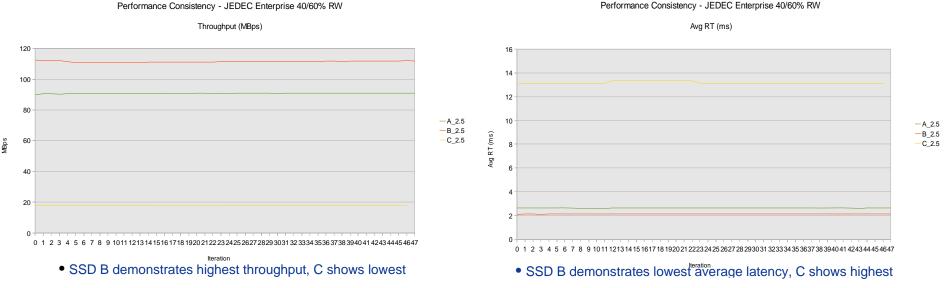

0 1 2 3 4 5 6 7 8 9 1011 1213 1415 1617 1819 2021 2223 24 2526 2728 2930 31 32 33 34 35 36 37 38 3940 41 42 43 44 45 4647

1.8" SATA – Performance Consistency Experiment #1

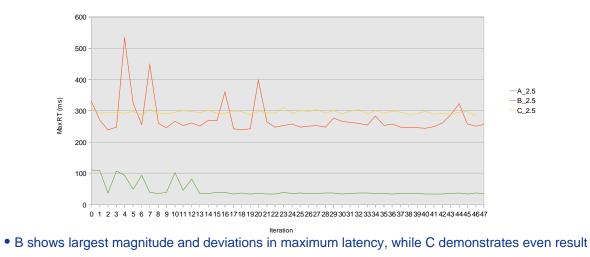
Performance Consistency - JEDEC Enterprise 40/60% RW



• SSDs show relatively stable average response time (and throughput) over approx. 350 hour test


Performance Consistency - JEDEC Enterprise 40/60% RW

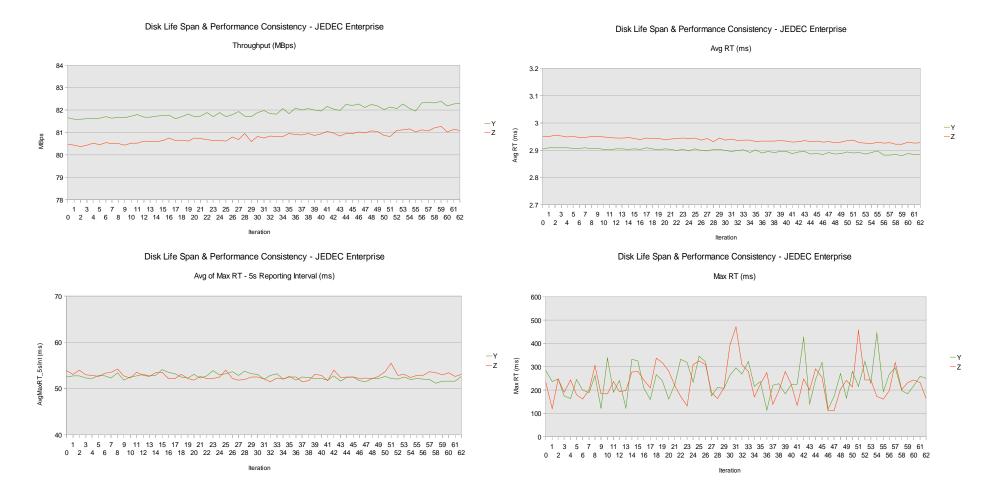
Max RT (ms)


Flash Memory Summit 2012 Santa Clara, CA • SSD A shows increased volatility in latter portion of 350 hour maximum response time test

Performance Consistency - JEDEC Enterprise 40/60% RW

Flash Memory Summit 2012 Santa Clara, CA

• Users may need to evaluate tradeoffs between throughput/average latency and maximum latency


Testing Iteration

1. Sequential Write - 24 hours

- 128K, Max IO rate, QD = 32, Incompressible data
- 2m measurement intervals
- 2. JEDEC Enterprise Workload 1 hour
 - 3 Mixed RW random workloads
 - RW = 40/60%
 - Transfer size mix
 - 512B (4%)
 - 1KB (1%)
 - 1.5KB (1%)
 - 2KB (1%)
 - 2.5KB (1%)
 - 3KB (1%)
 - 3.5KB (1%)
 - 4KB (67%)
 - 8KB (10%)
 - 16KB (7%)
 - 32KB (3%)
 - 64KB (3%)
 - Max IO rate, QD = 32, Incompressible data
 - 5s measurement intervals
 - Workload mix:
 - #1 (50% overall workload skew, 5% drive range)
 - #2 (30% overall workload skew, 15% drive range)
 - #3 (20% overall workload skew, 80% drive range)

1.8" SATA – Disk Life Span / Performance Consistency Experiment #2 Results

• Although throughput and avg. response improve, max. latency peaks increasingly evident over 62 hr. test (approx. 1500 hrs. seq. write incl.)

Disk Life Span / Performance Consistency Experiment #3

Testing Iteration

.

1. Sequential Write - 24 hours

- 128K, Max IO rate, QD = 32, Incompressible data
- 2m measurement intervals
- 2. JEDEC Enterprise Workload 1 hour
 - 3 Mixed RW random workloads
 - RW = 40/60%
 - Transfer size mix
 - 512B (4%)
 - 1KB (1%)
 - 1.5KB (1%)
 - 2KB (1%)
 - 2.5KB (1%)
 - 3KB (1%)
 - 3.5KB (1%)
 - 4KB (67%)
 - 8KB (10%)
 - 16KB (7%)
 - 32KB (3%)
 - 64KB (3%)
 - Max IO rate, QD = 32, Incompressible data
 - 5s measurement intervals
 - Workload mix:
 - #1 (50% overall workload skew, 5% drive range)
 - #2 (30% overall workload skew, 15% drive range)
 - #3 (20% overall workload skew, 80% drive range)



SUMMI

N – performance throttling disabled X – performance throttling enabled

1.8" SATA – Disk Life Span / Performance

Consistency Experiment #3 Results

 Although throughput/average latency degrade with throttling, avg. max. latency (and it's standard deviation) improves Flash Memory Summit 2012 Santa Clara, CA

SSD Architecture for Consistent Enterprise Performance – Next Steps

 Continue to monitor ongoing experiments for inconsistent performance / long latency events and trends

• Pursue root cause investigation of long latencies to determine how these events can be better managed in SSD background operations

• Perform additional experiments to better evaluate aging SSD and end-of-life scenarios to characterize likely performance consistency impacts

• Initiate SSD performance consistency characterization within RAID configurations to better analyze read/write tradeoff behaviors that likely exist within a real system environment

SSD Architecture for Consistent Enterprise Performance – Summary

- The traditional approach for managing background operations of enterprise SSDs is no longer acceptable
 - Clients beginning to pursue 24/7/365 SSD-driven operations
- Background operations should be performed continuously, and require a consistent level of throughput, or always done in low priority (never consuming an appreciable amount of host bandwidth)
 - Key examples are relocation algorithms due to read disturbs, garbage collection/ free space reclamation and ECC correction for aging SSDs
- Extensive characterization likely required to appropriately evaluate SSD performance consistency
 - Long duration testing and consideration of various conditions/scenarios throughout SSD life
- SSD throughput and average latency are not always good indicators of consistent SSD performance
 - Maximum and average maximum (per interval) latencies are key parameters to evaluate
- Background lifetime / performance throttling mechanisms will likely impact SSD performance consistency and must be thoroughly characterized