

A 2/4 TB SATA3 SSD Employing a Single Controller

HakJune Oh

Director, Product Development MOSAID Technologies Inc.

- Introduction
- HyperLink NAND (HLNAND) Flash
- HLSSD
- Summary

- Tiering storage is for efficiency and cost/performance
- More numbers of tier require the "intelligence" to manage data across tiers

Storage Tier with SSD

- Provide affordable Terabyte-class SSD for large and fast storage pool
- Reduce the number of storage tiers
- Minimize complexity of the intelligence to manage storage tiers

Performance and Scalability (SSD Capacity)

SSD Capacity = # of Channels x # of Devices per Channel x Flash Device Capacity

- Sandforce SF-2200 & Marvell 88SS9187
 - 8 channels
 - 8 ways per channel
 - 64Gb NAND Flash
- Maximum SSD capacity = 512GB (= 8 x 8 x 64Gb)

Performance and Scalability (SSD Performance)

- Adding more channels:
 - System design complexity
 - Poor Signal Integrity (SI)
 - Higher power consumption
 - ECC/IO overhead per channel
 - Complex PCB design requiring 7-10 layers
- Adding more devices per channel:
 - Compromise between performance and # of devices

Flash Memory Conventional Terabyte SSD

- Capacity: up to 4TB
- Host interface: SATA3
- Form factor: 3.5"
- 8 SATA3 controllers + 1
 SATA3 Hub Controller (VCA)
 - 8 NANDs per SATA3 Controller

Source: OCZ

0000 00

Conventional Multi-Level Terabyte SSD

- Time to Market All building components exist today
- Cons:
 - Multi-level architecture increases latency and decreases performance
 - High power consumption because of additional SATA3 links
 - More controllers result in higher cost, eat up PCB space

Single Native Controller Terabyte HLSSD

- Reduces cost and power consumption
- Improves overall performance
- Provides more PCB space for more NAND devices
- Cons:
 - Controller availability

Flash Memory Summit 2012 Santa Clara, CA 128-ways/chan

Introduction

HyperLink NAND (HLNAND) Flash HLSSD

Summary

Multi-drop Bus Topology in Conventional NAND

Point-to-point Ring Topology in HLNAND

HLNAND MCP Architecture

Memory

SUMMIT

Flas

(8+1)-die Stacked View

Measured Signal Integrity (DQ Signals from 8th Dev. @DDR800)

HLNAND Flash Benefits

(Performance, Scalability and Low Power)

- Higher performance 800MB/s and beyond (compared to 200MB/s & 400MB/s for conventional architecture)
- Virtually unlimited number of devices can be cascaded
- Superior signal integrity (SI)
- No ODT required
- Statistically 50% lower power consumption per channel due to power-saving feature
- Scalable without diminishing performance for Terabyte-Class & GB/s-Performance SSDs

Introduction

- HyperLink NAND (HLNAND) Flash
- HLSSD
- Summary

- Total 16 HLNAND MCPs
- 512GB/1TB per HLDIMM
- Max. 800MB/s Channel per HLDIMM

HLNAND 8 HLNAND 9 HLNAND 10 HLNAND 11 HLNAND 12 HLNAND 1 HLNAND 1

Front Side of HLDIMM

Back Side of HLDIMM

Flash Memory 2TB HLSSD Test

III 제목 없음 - ATTO Disk Benchmark	- • X	🛹 로컬 디스크 (D:) 속성 🛛 🗙
File View Help		ReadyBoost 이전 버전 할당량 사용자 지정
		일반 도구 하드웨어 공유 보안
Drive:	Direct I/O	
Transfer Size: 0,5 💌 to 1024,0 💌 kb	○ I/O <u>C</u> omparison ④ Overlapped I/O	A
Total Length: 4 mb	C Neither	종류: 로컬 디스크
	Queue Depth: 4 🚽	
Stripe <u>G</u> roup: Controlled	▼ Start	사용 중인 공간: 28,325,834,752바이트 26,3GB 사용 가능하 공간: 1 904,406,298,624바이트 1 73TB
<< Description >>		
	*	용당: 1,932,732,133,376BHUI트 1,75TB
Test Results	Wvite Road	
0.5	9088 10281	j
	17858 20232 34066 37027	드라이브 D: 디스크 정리(D)
	63462 71611 114294 125515	
	184549 207100 262144 302282	🔲 이 드라미브를 압축하며 디스크 공간 절약(C)
64.0	335544 394264 375390 440401	☑ 이 드라이브의 파일 속성 및 내용 색인 허용(I)
256.0	375390 440401	
1024.0	374454 439353	확인 취소 적용(A)
0 50 100 150 200 250 300 350 400 Transfer Rate - MB / Sec	450 500	
For Help, press F1	NUM	

- Dual-core with hardware accelerator
- Up to 8TB capacity
- SATA 6Gb/s with NCQ (PCIe interface is following)
- Persistent performance in compressed and noncompressed data
- End-to-end data protection
- Full disk encryption with AES-128/256 ECB/CBC/CTR/XTS
- Enhanced randomization for data reliability
- Smart power management for low- and peak-power control

Flash Memory HLSSD vs. Conv. SSD

	HLSSD	Conv. SSD
Capacity	4TB	4TB
# of Controllers	1	8 + 1 (= 9)
# of Channels	4	8 x 8 (= 64)
# of PKG / Channel	16	1
Total # of PKG	64	64
Power Consumption (50/50 Est. mW/MB/s)	8.1	9.8
64GB PKG Cost (8-die stacked)	\$34*	\$45**
Controller Cost (Est.)	\$20	\$150 (\$15*8 + \$30)
PCB, Active & Passive Parts	\$45	\$50
Final BOM for 4TB SSD	\$2,241 (= 64*\$34+\$20+\$45)	\$3,080 (= 64*\$45+\$150+\$50)

Note: * Use Asyn NAND die (\$0.5/GB) + Interface chip (\$2.00) ** Use Sync NAND (\$0.7/GB)

Flash Memory HLSSD's saving TCO

1PB Storage Solution

✓ GB & IOPS / W ✓ \$ / sqft ✓ TB / lbs

4TB

HLSSD & HDD Deploy	TCO (Est.)	
1TB SATA HDD x300	300TB	\$180,000
4TB HLSSD x202	808TB	\$2,197,000
25ea – 15 bay arrays	Rack space	\$232,000
45ea – 450W supplies	Power	\$26,000
	Cooling	\$20,000
Total TCO (Est.) *		\$2,655,000

Note: Real estate cost saving is not included.

SATA **1TB HDD**

40x 200GB	100 Arrays		

Conv. SSD & HDD Deployment		TCO (Est.)*
1TB SATA HDD x300	300TB	\$180,000
500GB SAS HDD x1600	800TB	\$1,708,000
200GB SAS SSD x 40	8TB	\$130,000
100ea – 15 bay arrays	Rack space	\$930,000
180ea – 450W supplies	Power	\$105,000
	Cooling	\$51,000
Total TCO (Est.)		\$3,104,000

* Source: Unit cost from FMS'11 by STEC

Introduction

- HyperLink NAND (HLNAND) Flash
- HLSSD
- Summary

Suggested Storage Tier with HLSSD

- HLNAND technology delivers affordable Terabyte sized SSDs (2TB/4TB/8TB)
- Single Native Controller based HLSSDs deliver the best \$/IOPS, IOPS/W and IOPS/GB
- Provide fast and large storage pool to minimize the number of storage tiers – no need for more than two "tiers" of storage
- Affordable Terabyte-Class HLSSDs minimize complexity of the intelligence to manage storage tiers

Flash Memory See a demo of HLSSD at Booth 714

