

Large-Scale Enterprise Flash Storage Reliability

It's Not Just About The Chips!

Erik Eyberg, Sr. Analyst Texas Memory Systems, Inc.

Flash Memory Summit 2012 Santa Clara, CA

- IBM recently announced their intent to acquire TMS (exciting!)
- But we are completely separate companies until the transaction closes
- This presentation is <u>not</u> intended to convey product plans, strategic directions, or any forward-looking statements for TMS or IBM
- It is just industry commentary based on a variety of sources

- Failure and Reliability Fundamentals
- Metrics
- Example Reliable Flash System Design

- Enterprise Flash storage systems include a variety of components, typically at least:
 - Data path infrastructure: drives, modules, RAID controllers, external interfaces
 - Management infrastructure: functional units for provisioning, monitoring, maintenance
 - Environmental infrastructure: power, cooling
- "Failures" that matter most: failures that impact the user (especially with data loss)

- "Write cliff" phenomenon
- Performance drops as Flash systems age
- Is diminished performance a failure?

It depends!

Main factor: most customers don't push systems to their absolute limit.

- At the Flash chip level: inability to reliably read and/or write data
- At the storage module/"SSD" level: problems with enough Flash chips or infrastructure (controllers, etc) to make modules inoperable or degraded
- At the system level: problems with enough modules to make system inoperable or degraded

- Chip level: error correcting codes and other advanced techniques to boost the number of P/E cycles that can be sustained*
- Module level: adaptive Flash management plus RAID and/or sparing techniques across sets of chips
- System level: RAID and/or sparing techniques across sets of modules + other infrastructure (interfaces, power, etc)

- All data storage systems eventually fail
- Two key questions:
- 1. How long should you expect between failures?
- 2. How gracefully are failures handled?

For most datacenter Flash customers:

- MTBFs and MTTFs measured in hours are either not meaningful or misleading (*alone*)
- Flash chip reliability drops due to #P/E cycles before it drops due to #operating hours
- MTTFs measured in bytes (PBW metrics) are more relevant
- Time-based "full drive write" and "full write performance" metrics are probably better

Maximum number of P/E cycles

Maximum write bandwidth (in P/E cycles/time)

- Estimates amount of time system/module will be able to deliver full write performance
- Suggestions for better acronym than yFWP?

- MTPI: Mean Time to Performance Impairment
- System-level metric that goes beyond yFWP
- Must be calculated @ specific performance
- RAID and sparing techniques coupled with internal performance governors should mean that MTPI for system > ∑ module MTPIs
- MTPI and MTBF provide fairly complete reliability picture for most customers

Example HA Flash System Design Storage Modules

Example HA Flash System Design System Architecture

Flash Memory Summit 2012 Santa Clara, CA

Example HA Flash System Design Data Protections

- Design to avoid failures in the entire stack
- Need to start at the chip and module level, but can't ignore the system level for truly large scale deployments
- Mirroring isn't efficient, and sparing isn't effective enough alone
- MTBF + MTPI = good picture of *meaningful* reliability for most customers