

Endurance Stretching Flash Memory With Serial SRAM

Written by Jonathan Dillon

Principal Marketing Engineer Memory Products Division Microchip Technology Inc.

Presented by Hardik Patel

Principal Applications Engineer SuperFlash® Memory Division Microchip Technology Inc.

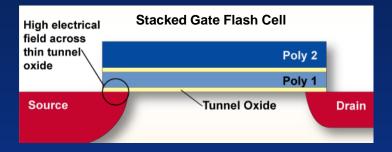
Agenda

- Example Application & Requirements
- Flash Memory
 - Both limits & increases endurance
- Application Solutions
 - High-Endurance Flash
 - Serial SRAM & Flash Hybrid
 - Serial NVSRAM
- Conclusion

Example High-Endurance Application

- Smart Meter
 - 60 Hz sample rate
 - 24-bit samples
 - Average usage
 - Definable time block average
 - Definable duration moving average

- 512 Kb of non-volatile storage
- Rewritten every 5 minutes for 25 years
- Endurance of 2,629,800 program/erase cycles/bit



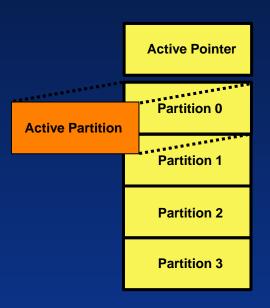
High-Endurance Flash Memory Solution

Flash Memory Endurance

- Flash memory has finite endurance
 - NOR 100,000+ cycles, typical

- Trap generation in oxide
 - Accumulation limits endurance
- Stress-induced leakage limits endurance
 - Note: Split-gate SuperFlash® memory has greater immunity

Flash Memory Endurance, Cont.


- Memory-cell endurance can be increased by:
 - Longer delay between writes
 - Allows trapped charge to relax
 - Temperature
 - High temperatures accelerate charge relaxation
 - Data variance
 - Repeated writes of same data causes higher wear
 - '1' no charge transfer, thus less wear

High-Endurance Flash Solution

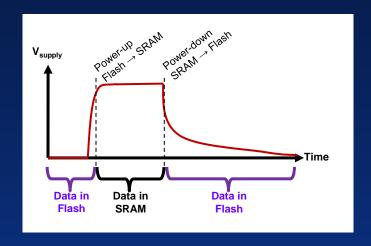
 Higher density Flash to achieve higher endurance

- Wear leveling
 - Partition the Flash
 - Cycle through the partitions
 - Need to manage partitions
 - Store which is current partition

High-Endurance Flash Solution, Cont.

- 16 Mbit NOR Flash
 - Flash endurance 100,000 cycles
 - Required endurance of 2,629,800 cycles
 - Wear leveling across 27 partitions
 - Each 512 Kb
 - 2.5 Mbit available for partition management & other storage
 - Flash offers low cost/bit nonvolatile storage
 - NOR offers high reliability

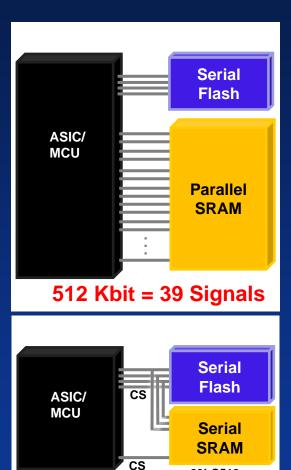
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
Partition Tracking



Hybrid Memory Solution

Hybrid Memory Solution

- 2-chip solution
- SRAM & Flash
 - SRAM for endurance
 - Flash for NV storage



- SRAM is volatile memory
 - Power-up: Load SRAM from Flash
 - Modify individual bytes in SRAM
 - Power-down: Copy SRAM data to Flash
 - Power down
 - Detect loss of power, low voltage
 - Must store to Flash before brown-out

Hybrid Memory Solution, Cont.

- Serial vs. Parallel SRAM
 - SRAM traditionally Parallel
 - Flash is migrating to Serial
 - Serial SRAM
 - Supports SPI, SDI & SQI™ buses
 - Shared bus with Flash
 - SQI allows 80 Mbps reads on power-down
 - Small 8-pin packages
 - Low cost

512 Kbit = 4 Signals

23LC512

Hybrid Memory Solution, Cont.

- Required application endurance
 - 512 Kb of storage
 - 2,629,800 writes to every bit
 - 512 Kb SRAM & 512 Kb Flash
 - Flash program cycle per power down
 - Application endurance 100,000 power downs
 - Must detect power-down and store
 - Loss of AC signal
 - Low voltage on supply

NVSRAM Memory Solution

NVSRAM Solution

- Non-Volatile SRAM (NVSRAM)
 - Unlimited endurance & non-volatile
 - Battery back-up
 - Preserves data when system unpowered
 - Byte level modifiable
 - Immediate read/writes to NV storage

NVSRAM Solution, Cont.

- Using NVSRAM
 - Parallel & Serial NVSRAM
 - Legacy Parallel NVSRAM
 - Many control signals
 - Highest speeds
 - Serial NVSRAM
 - Standard SPI interface
 - SDI for higher speeds
 - Long battery life*
 - Low cost

NVSRAM Solution, Cont.

- NVSRAM has no endurance limit
 - 512 Kb NVSRAM for storage requirement
- Back-up Battery
 - Low current draw
 - Handling of data loss on battery failure
 - Increased component count
 - Could share battery with RTCC

Conclusion

- Can meet High-Endurance NV requirements by:
 - Partitioning Flash and wear leveling
 - Buffering the data in a SRAM device
 - Using a battery-backed NVSRAM
- Serial SRAM & NVSRAM
 - Compatible with common Serial Flash interfaces
 - Minimizes signals and pins
 - Small packages and simple design

Trademark Note

SuperFlash is a registered trademark of Microchip Technology Incorporated in the U.S.A. and other countries. SQI is a trademark of Microchip Technology Inc. in the U.S.A. and other countries. All other trademarks mentioned herein are the property of their respective companies.