

Embedded SSDs

When Less Really is More

Flash Memory Summit 2012 Santa Clara, CA

Flash Memory **Typical Embedded Applications**

SUMMIT

Embedded App Characteristics

Often space-constrained

 Systems typically fan-less with <4W power budget

- Capacity "sweet-spot": 2GB-16GB
- Data integrity and reliability higher priority than performance

Memory Embedded SSDs: Common Usage

Booting (O/S or application)

Typical O/S load is less than 4GB

Data-logging

- Typically smaller (<1GB) files, 2-3 drive writes/day
- Fast backup
 - Metadata file backup (~10GB) in system panic event

Performance cache

• "Hot" data stored on SSD, "cold" data on HDD

Compared to "standard" SSDs, Embedded SSDs:

•Have a 50%+ smaller footprint

•Consume less power (and generate less heat)

	2.5" HDD	Embedded SSD	2.5" SSD
Typical Power Consumption	7W-10W+	2.5W-4W	4.5W+

•Support lower capacities for lower acquisition cost (rightsized for the application)

Embedded SSDs include many of the same enterprise features as standard SSDs:

Advanced Flas

- Flash Management / Data Integrity
 - Advanced ECC and data corruption mitigation

Reliability

Advanced power-fail and reset error handling

Technology

Endurance

• Advanced wear-leveling, write-amplification reduction and read-disturb mitigation

Embedded SSDs: Reliable NAND

- Embedded SSDs use lower density flash (e.g. 8/16/32Gb)
- Lower density flash is mfg'd in larger die geometries (e.g. 4X/3Xnm vs. 2X/1Xnm)
- Consequence of smaller geometries is higher bit-errors and lower endurance
- Conclusion: Embedded SSDs are highly reliable

	2006	2007	2008	2009	2010
Characteristics					
Monolithic Die Density	2Gb	8Gb	8Gb/16Gb	16Gb/32Gb	32Gb/64G
Geometry (nm)	90	72	50	34	25
PROG (µs TYP)	~300	-700	~300/~900	-300/-900	-300/-130
Page Size (bytes)	2112	2112	4314	4320	8640
Number of Planes	1	2	2	2	2
Number of Pages (SLCIMLC)	64	128	64/128	128/256	128/256
Block Size (KB)	128	256	256/512	512/1024	1024/2048
R (µs)	25	50	25/50	25/50	35/75
ECC Required/ Code Word	1/528	4/528	4/539, 8/539	4/540, 12/540	8/540, 24/1080
NOP (Number of					
Operations)	0				4/1
Endurance	100,000	10,000	100,000/ 10,000	100,000/ 5000	60,000/ 3000
Interface (MTIs)	SDR 40	SDR 50	SDR 50	DDR 166	DDR 200
Packages	TSOP	TSOP	TSOP	TSOP, LGA, BGA*	TSOP, LGA BGA*
Temperature Range	с	c	c	C, I	Ç, I

Notes: Timeline years are approximate. Values specific to MLC devices are in bold. Shaded columns identity the NAND devices used for most of our comparisons. *Up to B-die BGA packages offered.

Example: Enterprise Rack Server

Challenges

- HDD too slow
- Boot time too long
- Power consumption too high
- Standard SSD footprint too big

MACH16[™] Slim SATA Solution

- Faster boot, data logging and emergency backup of metadata files
 - Smaller than 2.5" SSD
- 100MB/s sequential writes
- Fits 4W storage power budget

Example: UMA Ground Control Unit

Challenges

SWAP Design Requirements

- Size—smaller than 2.5" SSD
- Weight—lightweight, ruggedized
- Power—battery-powered ; very low-power envelope
- Low-latency video recording

 Military requirements for rugged, long-lasting data reliability and integrity MACH16[™] Slim SATA Solution
•Low-latency solution for video capture
•Delivers on SWAP requirements (sub-4W design)
•Meets military specs for shock, vibration and temperature

Example: High-End Network Router

Challenges

- Form-factor reduction (standard 2.5" SSD too big)
- Persistent data requirement
- Five 9s service level agreements

- MACH16™ Slim SATA Solution
- Boot device
- Compact Slim SATA footprint
- PowerSafe[™] Technology
- Right-sized performance and capacity

Embedded SSDs enable system designers to...

...build smaller, more compact and quieter designs (no cooling fans required)

...lower system TCO (lower acquisition and operating costs, smaller board designs)

...design for a variety of environmental conditions (e.g. temperature extremes, shock/vibration, etc.)

THANK YOU!

Drop us a line at: <u>EmbeddedSSD@stec-</u> <u>inc.com</u> with any questions