

# *Optimize your system designs using Flash memory*

Howard Cheng Sr. Segment Applications Manager Embedded Solutions Group, Micron





©2012 Micron Technology, Inc. All rights reserved. Products are warranted only to meet Micron's production data sheet specifications. Information, products, and/or specifications are subject to change without notice. All information is provided on an "AS IS" basis without warranties of fany kind. Dates are estimates only. Drawings are not to scale. Micron and the Micron logo are trademarks of Micron Technology, Inc. All other trademarks are the property of their respective owners.

# Agenda



- Non-Volatile Market & Trends
- Flash Cell Architectures
- Flash Memory Choices
- System Considerations
- Summary



### **2012 Semiconductor Market Forecast**



Source: Gartner 3Q11



### The Embedded Markets



Source: Gartner/iSuppli/Micron 2011



# Embedded Flash Technology Trend



Source: iSuppli, Mkt research, does not include large data applications (ie PMP, MP3, SSD, Media Cards, etc)

# Embedded Flash Technology Trend



Source: iSuppli, Mkt research, does not include large data applications (ie PMP, MP3, SSD, Media Cards, etc)

# Agenda



- Non-Volatile Market & Trends
- Flash Cell Architectures
- Flash Memory Choices
- System Considerations
- Summary



### Cell architectures





# PCM product attributes

- Available in NOR-type options
- Industry driving toward LPDDRx
- Fast programming for NVM
- Fast read capability



### **Evolved Options**

- NOR replacement NOW
- NAND replacement <5 yrs</li>
- RAM replacement <5 yrs</li>

### **Disruptive Options**

- Integrated memories NAND/RAM
- System Cache Options
  - HDD/SDD Integration
  - PCIe

### PCM benefits



# Agenda



- Non-Volatile Market & Trends
- Flash Cell Architectures
- Flash Memory Choices
- System Considerations
- Summary



# Solutions for different requirements





#### **Customer Requirements Dictate the Solution**



# NOR product attributes

- Simple command sets
- Cost effective at low densities
- Stable architectures
- Value added features (XiP, security, quality, small data, etc)



### <u>Serial</u>

- Low pin counts
- Easy PCB routing
- Smallest footprint
- Synchronous operations
- Cheapest low density

### Parallel

- Basic add/data interface
- Asynchronous random access
- Synchronous burst operations
- Higher throughput
- Best XiP architecture

# NAND product attributes

- Low pin counts
- Cheapest cost/bit at high densities
- Frequent conversions/migrations required
- Fast programming



### **Discrete**

- Some controllers support boot
- Some standards (ONFI)
- Common packages
- Needs SW for error management
- Demand paging saves bits

### Managed

- Error management onboard
- Some controllers support boot
- Higher density reach
- Easier conversions/migrations
- Standards (MMC, USB, uSD...)

### Flash Architectures – Component Level



All architectures have their advantages

Micron

Trend in the industry moving toward the lower pin count architectures

### NAND technology challenges

#### How to manage the ECC requirements?

- NAND controllers with high ECC capability
- ECC NAND managed solutions
  - on-die ECC, ClearNAND
- Fully managed solutions
  - eMMC, eUSB, others

#### How to manage lower Endurance?

- Understand the application and usage model
  - How does the file system work?
  - How often are you programming?
  - How big is the data file/s?
  - What is the PLC of your system?



Determines PE Cycles and Density Required

#### Intersecting your project and the memory technology is key to success!



### NAND system solutions for Industry

Host Controller I **Raw NAND** for application "expert" with NAND data NAND Interface **Raw NAND** NAND BUS management and ready to support ECC needs. ECC FTL LLD Host Controller II **ECC NAND** for application that do not want to change the ECC NAND **NAND** Interface NAND BUS ECC with the NAND litho shrink. ECC FTL LLD Host Controller III SPI Serial NAND for application requiring high density with ECC **SPI Interface** SPI BUS Serial protocol. FTL LLD eMMC NAND Host Controller IV **eMMC interface** for application that want to offload by any ECC eMMC Interface MMC BUS NAND data management with a standard interface. LLD FTL Host Controller V **eUSB NAND eUSB interface** for application that want to offload by any ECC **eUSB** Interface USB BUS NAND data management with a standard interface. LLD FTL



### Level of Management by NAND solutions

### Level of Management by NAND Solution

|                                                                    | Raw NAND | ECC NAND<br>(On-Die ECC,<br>ClearNAND) | Fully Managed<br>(eMMC, eUSB) |
|--------------------------------------------------------------------|----------|----------------------------------------|-------------------------------|
| Complexity of<br>Customer Development<br>(NAND Management by Host) | High     | Med                                    | Low                           |
| New Product<br>Qualification<br>(Complexity & Effort)              | High     | Med                                    | Low                           |
| Relative Cost                                                      | Low      | Med                                    | High                          |

Trade offs between Complexity, Qualification Effort & Cost



# Agenda



- Non-Volatile Market & Trends
- Flash Cell Architectures
- Flash Memory Choices
- System Considerations
- Summary



### Performance considerations for system solutions



Raw NAND, ECC NAND and eMMC require different management software

The correct performance evaluation is at system

 LLD = Low Level Driver
 ECC = Error Correction Code
 FTL = NAND Scheduling Logical Mapping, Bad Block Management, Wear Leveling

 Signature
 ©2012 Micron Technology, Inc.
 20

# Memory subsystem designs/architecture



#### Execute in Place (XIP) Architecture

#### "Store and Download" (SnD) Architecture



- Simple architecture
- Possible to reduce DRAM density
- Lower stand-by power

- Complex but higher performance
- More DRAM required
- Higher stand-by power

#### 

# System cost reductions and simplification

#### Software Architecture



#### **Understand Your Usage Model**

- xRAM Usage models
- How many CE#/Banks do you use
- Why might you split memory into separate chips
- Other system SW requirements (file system, data logging, etc)



Performance vs. Cost ratio

#### ©2012 Micron Technology, Inc. | 22

### Larger Data Fetches

Random Read Access Performance vs. Data Size



### Performance Comparison – Small Data

Random Read Access Performance vs. Data Size



Micron

# Memory technology comparison



All memory technologies have their advantages

Micron

Look for ways to differentiate and stay cost effective

# Agenda



- Non-Volatile Market & Trends
- Flash Cell Architectures
- Flash Memory Choices
- System Considerations
- Summary



### What's next?

### **Customers**

- 1. Understand memory usage
- 2. Understand true cost
- 3. Work with a trustworthy supplier



### **Suppliers**

- 1. Provides technology leadership & product longevity
- 2. Architecture transparency
- 3. Systems expertise & silicon/solution standards



### **Broadest Portfolio**

- Industry's broadest portfolio
- Computing, server/networking, embedded, mobile, consumer





# Micron's Product Portfolio

#### NOR

- Parallel and Serial NOR product portfolios, densities 512Kb-2Gb+
- Technology leadership on 65nm and 45nm.
- Automotive and industrial qualified solutions

#### NAND

- Discrete and managed solutions, densities 128Mb-64GB
- Technology leadership on 20nm
- Automotive and industrial qualified e·MMC<sup>™</sup> solutions
- Legacy support for low density NAND

#### DRAM

- Legacy SDRAM through cost/performance leading DDR3 offerings
- Discrete and module DRAM solutions
- High speed RLDDRx Options
- Automotive and industrial qualified solutions

#### **Phase Change Memory**

- First commercially available PCM products
- P5Q: Serial NOR compatible, densities 32-128Mb
- Award winning technology
- New families on 45nm













