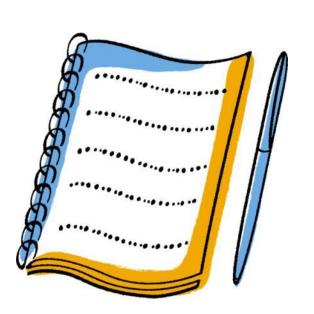


Virtual Storage Tier and Beyond

Manish Agarwal
Sr. Product Manager, NetApp

Trends

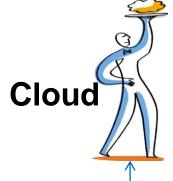

- Other Storage Trends and Flash
- "5 Min" Rule
- Issues for Flash
- Dedupe and Flash

Caching Architectural Choices

- NetApp's Criteria for Effective Tiering
- Performance and Caching "Tiers"
- Comparison of Cache Location Choices
- Implication of Trends / Choices

NetApp Virtual Storage Tier

- Portfolio of Products
- Performance Results
- Flash in a Shared Virtual Infrastructure

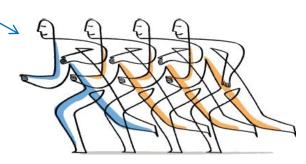


Trends

Storage Trends and Flash

- Performance bursts
- **QOS** and Cache partitioning

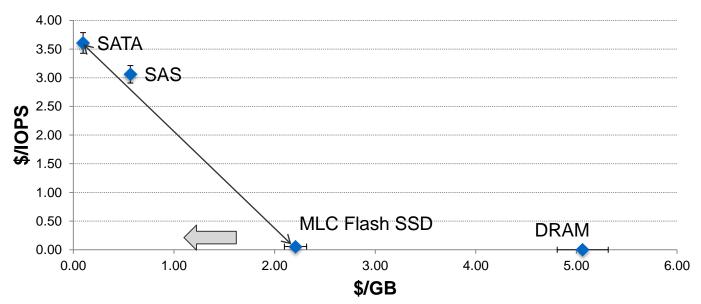
Consolidate performance Flash


Need for shared cache

Enabling new applications

Big Data

Virtualization



Flash Vs HDD Gray's "5 min rule" becomes 30 hrs

- 16K random access re-reference interval < 30h
 - Use Flash instead of HDD
- For 2 MiB sequential, breakeven is 1/4 hour

\$/IOPS vs. \$/GB for IO Devices

Issues for Flash to Overcome

Wear Life

- Cache is the worst case for wear life
- NetApp's Write-Anywhere layout minimizes write amplification

	SLC	eMLC	MLC	TLC
P/E Cycles (K)	100K	30K	5-10K	1-3K

Cost (\$/GB compared to SATA)

	RAM	SAS	SLC	eMLC	MLC
Cost compared to SATA	200x	6x	80x	40x	20x

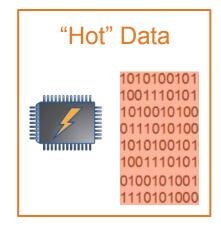
Management Overhead

Data Migration Or Caching

Meant for Each Other

Caching Architecture Choices

Storage Tiering


Primary Storage Pool:

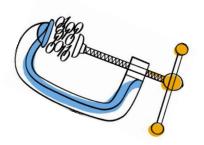
All data - hot and cold

Objective:

Intelligently
place "hot" data
on the highest
performing media



Data should be fast when hot, and low cost when it's cold


NetApp's Criteria for Effective Tiering

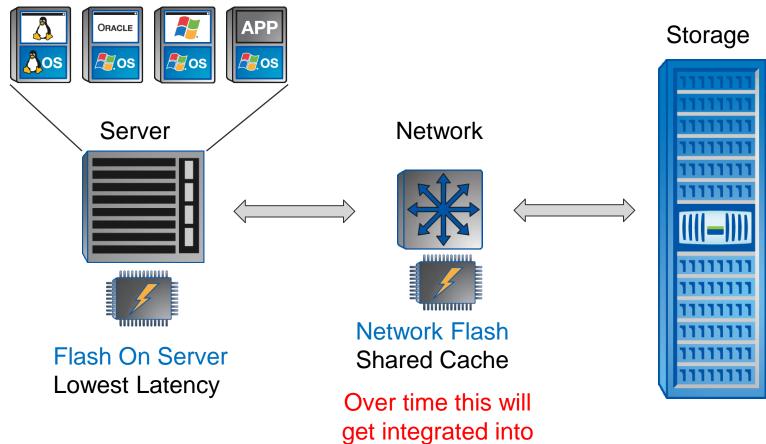
Simple

- Work out of the box with default settings
- Low management overhead

Efficient

- Use high cost media (Flash) efficiently
- Enable high capacity drives as primary tier

Real-Time


Serve data when it's hot

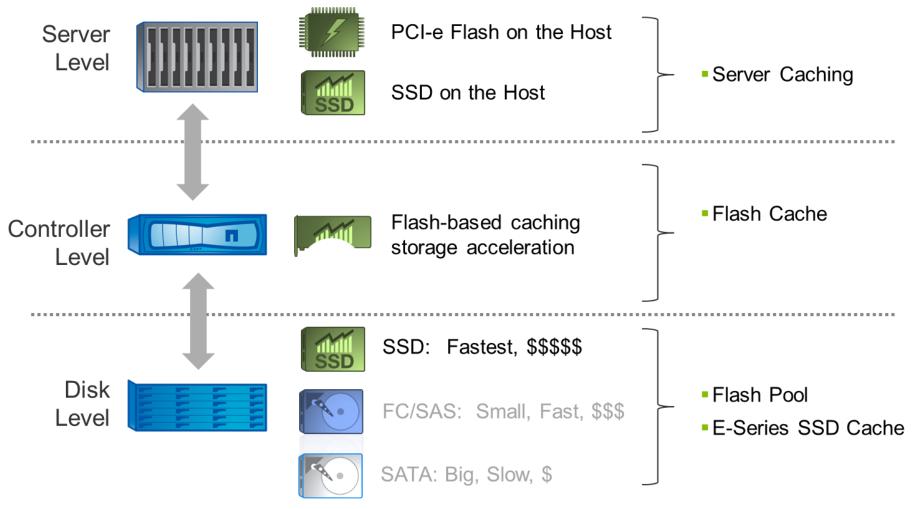
Caching Architectures

host or storage

Flash on Storage Controller Shared, resilient Cache

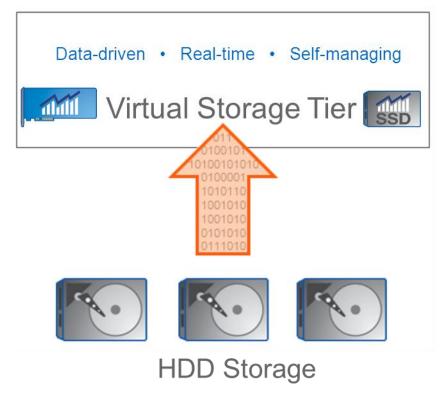
Memory Summary: Implications of Trends

- Over time Networked cache will merge into the host or the backend controller
- Tiering architectures will evolve to 2-tier architectures
- Cache on the host and the cache on the controller will co-exist
- Emergence of the performance and capacity "tiers"
- Over time Flash will be replaced by other SCM alternatives


Virtual Storage Tier

NetApp Flash as Cache Portfolio

Includes only caching options



Memory Virtual Storage Tier

- Efficient Use of Flash
- Simple to install
- Self Managing
- Non Disruptive Operations
- Caching vs. Data Migration
- Minimal HDD I/O's
- Highly Granular (4KB)
- Real Time Responsiveness

Memory VST: Flash Cache (File Services)

Before:

FAS 6210 HA Pair with 144TB

240 SAS 600GB10K RPM Disks

After:

FAS 6210 HA Pair with 168TB

168 1TB 7.2K RPM SATA Disks

1TB Flash Cache

Cost/Efficiency Impact

- Entire workload moved from SAS to SATA (file services workload)
- 34.1% lower cost per TB
- 40.2 % lower \$/IOPS
- 40.5% less power

Flexibility Impact

- 16.7% more storage capacity
- 28.5% more IOPS
- 18.5% improvement in average response time

Memory VST: Flash Pool (OLTP)

Before:

FAS 6210 HA Pair with 144TB

240 SAS 600GB10K RPM Disks

After:

FAS 6210 HA Pair with 216TB

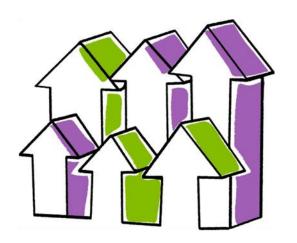
216 1TB 7.2K RPM SATA Disks

24 100GB SSDs

Cost/Efficiency Impact

- Entire workload moved from SAS to SATA (OLTP workload)
- 46.3% lower cost per TB
- 18% lower \$/IOPS
- 26.5% less power

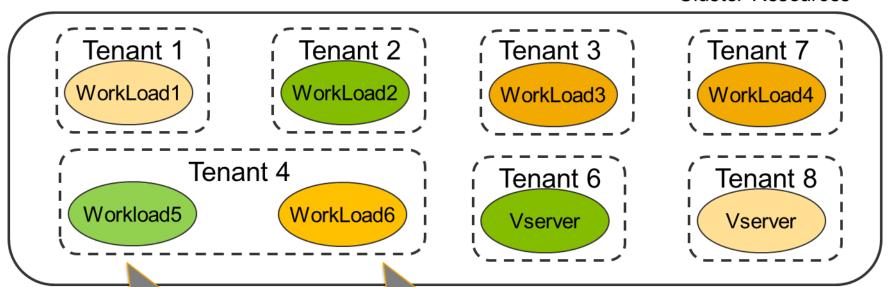
Flexibility Impact


- 50% more storage capacity
- Similar IOPS (± 2%)
- Significant improvement in average response time

Memory Where to use VST

VST has been effective in these environments

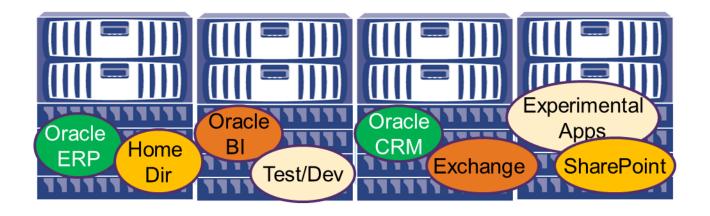
- Databases
- File services
- VMware®, Hyper-V,™ and Citrix
- Microsoft® Exchange and SharePoint®
- Engineering and software development



Shared Virtual Infrastructure

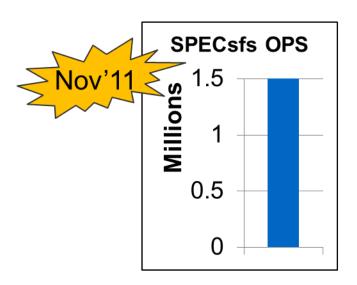
Logical View

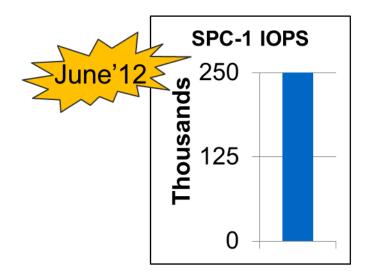
Cluster Resources


IOPS Reserve: 20,000 IOPS Limit: 40,000

IOPS Reserve: 10,000 IOPS Limit: 20,000

Shared Virtual Infrastructure Physical View




- Automated provisioning via Service Catalogs
- Dynamic placement based on SLO
- Intelligent cache partitioning
- Non-disruptive operations
- Seamless scaling

Performance, Sc

NetApp Data ONTAP 8 and FAS Systems deliver scalability, efficiency, and non-disruptive operations

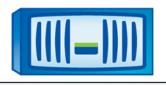
- Leading performance for NAS
- Scaling to 24 nodes
- Consistently fast response time
- High performance for SAN
- NetApp storage efficiency drives price/perf value (\$6.69/SPC-1 IOPS)
- Scaling to 6 nodes

For more information, visit http://www.storageperformance.org/results/benchmark_results_spc1#a00115 SPC-1® is a trademark of the Standard Performance Evaluation Corp.

Thank you

NetApp Flash as Cache Offering

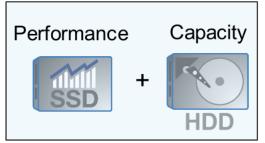
Today (Jul 2012)


Flash Cache	Flash Pool		
Performance Capacity PCI-e Cache HDD	Performance Capacity + HDD		
What is it?Controller based PCIe cardPlug and play	 What is it? Storage level RAID protected read & write cache 		
 What does it do? Per controller cache – hot volumes on multiple aggrs Caches random reads 	 What does it do? Specific to aggregates Caches random reads & writes Cached data persistence through failovers 		

NetApp Flash Cache

Flash Cache

Standard with all FAS/V 6240 and 6280 systems


- Improves average latency for random reads
 - PCI-e Controller based Flash
- Increase I/O throughput
- Reduce costs by using fewer, less expensive disk drives
- No management required
- Effective for file services, tech apps, web apps

NetApp Flash Pool

Flash Pool

- SSD-like performance for hot reads and writes data
 - Aggregate-level, read and write cache
- Enables capacity optimized HDDs as primary disk Tier
 - All Workloads
- Consistent performance during takeover and reboot events
- Works out of the box with default settings
- Effective for biz apps, OLTP, VDI