Cache To The Future

Introduction

STEC, Inc. Confidential-Page 2

Flash – Factors & Placement

Server

Network

STEC, Inc. Confidential—Page 3

SSD in Datacenter: Server

Benefits

- Close to CPU
- Lower latency
- Higher bandwidth for PCIe form factor

Bottlenecks

- Scalability & sharing
- Complex management
- Data protection

Usage

- SSD as primary storage
- SSD as cache

SSD in Datacenter: Network

Benefits

- Data sharing
- Reliability & redundancy

Bottlenecks

- Network latency
- Higher cost/IOPS

Usage

• SSD as Cache

The SSD Company"

SSD in Datacenter: Storage

Benefits

- Data distribution
- Reliability & Redundancy

Bottlenecks

- Higher cost / IOPS
- Network latency
- Protocol overhead

Use case

- SSD as pure storage
- SSD as tier
- SSD as cache

SSD Data Placement Strategy: Primary Storage

Pros

- High performance
- Simplified management
- Efficient data management
- Randomized read/write intensive environment

Cons

• Cost

Deployment

- Virtual environment
- Any application with large working dataset
- Limited power & cooling

Primary Storage

SSD: Data Placement Strategy: Tiered Storage

Pros

- Unstructured data
- Cost as compared to Primary storage

Cons

- No second copy of data
- Limited capacity
- Additional Stack
- Frequency of data migration

Deployment

• Virtual environment, Heavy traffic applications, Databases (Indexes, temps)

SSD Data Placement Strategy: Cached Storage

Pros

- Cost
- Redundant copy of data
- Transparent

Cons

- Limited capacity
- Write intensive environments
- Additional layer in the stack

Deployment

- Virtual environment, Databases
- Application metadata, frequently accessed files

SSD Data Placement Strategy: Collective Attributes

Cache Strategy: Server

Pros

- Closest to the CPU (for PCIe)
- Lowest latency, no network latency
- Highest Throughput (for PCIe)

- Complexity with clusters
- Dependency on OS
- Data protection

Cache Strategy: Network

Pros

- Well suited for cluster servers
- Manageability
- Data protection

- Network latency adds up
- Throughput Not as high as Server

Cache Strategy: Storage Array

Pros

- Ease of scalability
- Works well in Clustered environments
- Data protection

- Network Latency adds up
- Not as high as server

Cache Strategy: Collective Attributes

Server	Network	Storage
No network latency	Higher Network latency	Highest Network latency
Cluster complexity	Cluster easily managed	Cluster easily managed
Databases, application metadata	Virtualization, HPC	Virtualization, HPC

Server Caching: Storage Controller

Pros

- Independent of OS
- Added redundancy
- Simplified management
- closest to storage in stack
- Cheap

- Hardware dependency
- OS dependency

Server Caching: Device Driver

Pros

- Simplified management
- Independent of hardware
- High performance
- Application independent

- Addition to the storage stack
- Less control

Server Caching: File Sytem

Pros

- Independence of hardware
- High performance
- Absolute control over cache

- OS dependency
- Application dependency
- Addition to the storage stack

Server Caching: Attributes

Storage Controller	Device Driver	File System
OS & Application independent	Application independent	OS & Application dependent
Hardware dependency	No hardware dependency	No hardware dependency
Built in hardware write back protection	Use 3 rd party integration for write back protection	Use 3 rd party integration for write back protection

330 60111

Cache`nomics: Cache Performance Factors

STEC, Inc. Confidential—Page 19

Cache'onomics: The Cache Performance Meter

Cache`nomics: Working Dataset

- Identifying working dataset for caching The right mix
- Predicting working dataset size
- Influences SSD size used for caching
- Impacts cache hits

Cache`nomics: Caching Algorithm

- Spatial or Temporal or Proprietary
- Effectively identifying the hot data
- Prefetching intelligence
- Applying compression & dedup
- Identify sequential reads/writes
- Effective place data in cache
- Impacts cache hits and cache size

Cache`nomics: Write Back Policy

- Writes to SSD, later copies the 'dirty data' to HDD
- Fastest performance for read/write environment
- Data loss possibility
- Implementation: Less risky environments like back end analytics

Cache`nomics: Read Only Policy

- •No writes to SSD
- •No data loss
- •Best benefit in read intensive environment
- •Databases, read intensive work environments

Cache`nomics: Write Through Policy

- Writes on SSD & HDD simultaneously
- No reliability issues
- Read/Write environment makes it less effective though more effective than read only
- Preferred over read only in similar environments with a mix of writes as well
- Good for data analytics,

Cache`nomics : Write Policies Attributes

Read Only/Write	Write –Through	Write-Back			
No writes to SSD	Writes to SSD & HDD simultaneously	Writesto SSD, later copies to HDD	Writeback	Writethrough	Writearound
No data loss issues	No loss issues	Data loss possibility	Cache	Write	Re Wri
Read intensive environment	Read/Write environment makes it less effective though more effective than read only	Read/Write environment, best option to go with	Lazy dirty cleaning	Cache Miss	Cache Miss
Databases, read intensive work environments	Preferred over read only in similar environments with a slight mix of writes as well	Less risky environments like back end, analytics can use this mode	Disk		

SIEC

The SSD Company"

Cache`nomics: Replacement Policy and Block Size

- LRU, FIFO, Random, ARC, Proprietary
- Full cache block eviction accuracy
- Size of cache block based on working dataset
 - Bigger block size results in wasting diskspace
 - Smaller block size results in poor performance

Cache`nomics: Applications

- Vertical
 - OLTP, OLAP, Data Warehousing, Data Mining
- Horizontal
 - Database (Oracle, SQL, MySQL)
 - Transaction logs, tables, indexes
 - Virtualization
 - VDI, VM apps
 - Enterprise applications
 - Metadata

Cache Solutions: Recent Trends

- Predictor to suggest the customer
 - Working dataset
 - Replacement policy
 - Block size
 - Write policy
- Application tweaking and best practices efforts

- Multiple plug-ins for SSD in enterprise
- Deployment strategies revolve around the key factors
- Caching solutions have evolved and keeps evolving
 - From array to server, trying to see as many possibilities as possible
- SSD cache aware application trends (Oracle for db example, ZFS possibly for File System (not sure on ZFS))

