

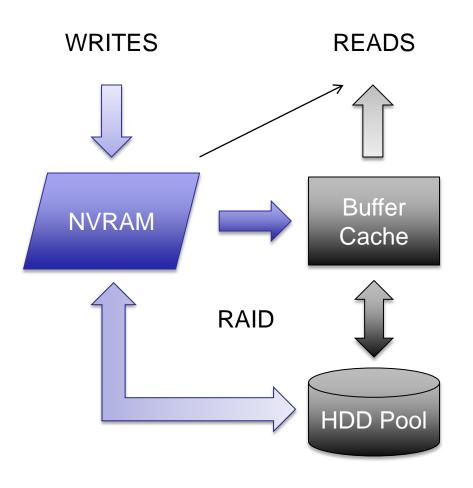
# What Flash Means to the Future of Storage System Architectures

Starboard Storage Systems
Kirill Malkin
Lee Johns



## Flash in Storage Systems Today

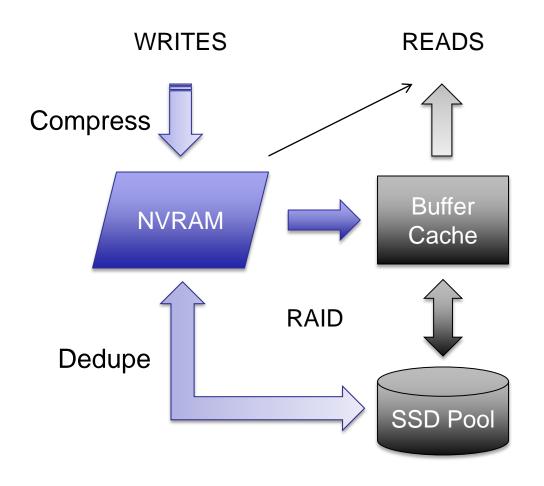
- The Use of Flash in Storage Solutions:
  - Storage Tier
    - As a replacement for HDD
  - Storage System Writeback Cache
    - Absorbs rapid-fire writes
  - Storage System Read Cache
    - Extension of DRAM buffer cache
  - Server-side Cache
    - Eliminates networking latency




#### emory Different Shapes & Forms of Flash

- NAND chip types
  - SLC, e/MLC, TLC...
- Attachment type
  - SATA, SAS, PCIe
- Wear leveling algorithms
  - Rewrite cycles (longevity)
- DRAM front-end
  - Performance, read disturb mitigation
- Write completion guarantee




### Basic Storage System Architecture



- NVRAM absorbs writes
- NVRAM assists RAID updates
- Buffer cache facilitates readahead
- NVRAM 1-8GB
- Cache 16-64GB



### Storage System with Flash SSDs



- Replace HDDs with SSDs
- Avoid full RAID rebuilds
- Compression and deduplication
  - Reduce data footprint to mitigate write amplification
  - Speed up reads, improve caching



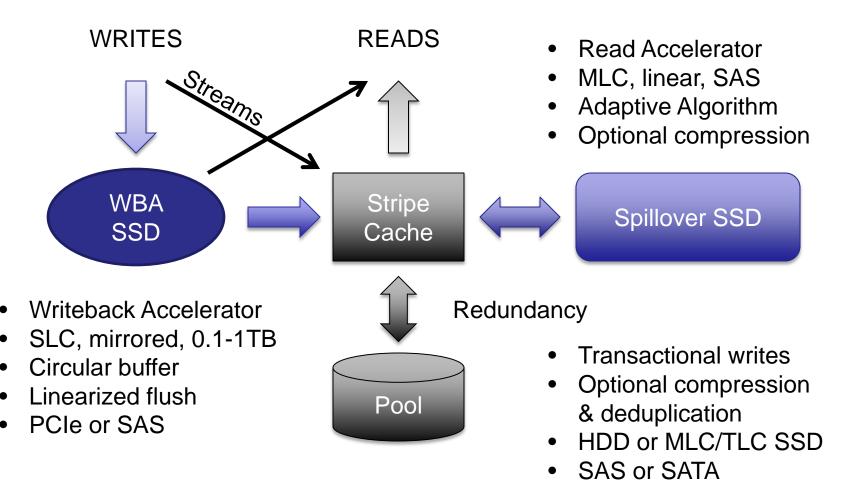
#### Memory All-SSD Systems have Issues

- Endurance & Longevity
  - How long will it last given the load?
  - SLC is good, MLC not so much
  - Some devices don't fail, just slow down
- Lower capacity compared to HDD
  - Especially SLC
  - Particularly on non-compressable, non-dupe data
- Cost
  - SLC is \$\$\$\$\$
  - MLC is \$\$\$



#### **Active Data Footprint**

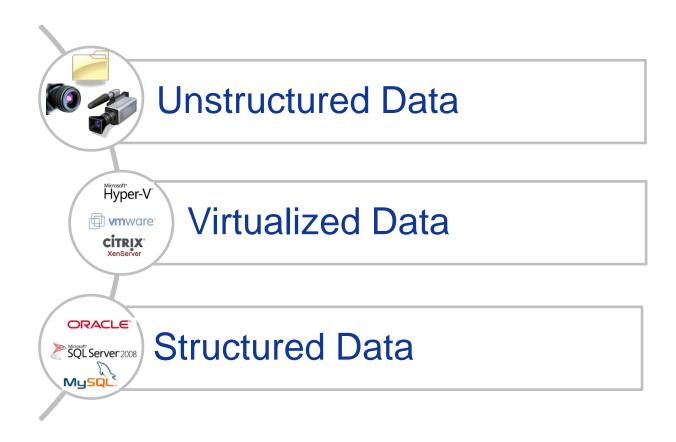
- Modern Storage Systems feature large data capacity (30TB-1PB)
- Yet only about 5% of data is active at any one time: e.g. for a 30TB system, only 1.5TB
  - For a typical set of workloads
  - Except for initial loads and full backups
- If the active I/O is always directed to Flash, we can get Flash-like performance for the entire Storage System




#### Cached or Tiered? Accelerated!

- Absorb random writes with flash
  - Heavy write streams go directly to pool
- Large writeback area acts as a "tier"
- Frequently accessed stripes stored in flash
  - Heavy read streams go directly from pool
- Flash stratification:
  - SLC for the most critical loads and metadata
  - Disposable MLC for read caching
  - Redundant MLC/TLC for the dynamic pool
- Flash is added if the active footprint grows
- The pool acts as an archive tier




#### Hybrid Storage System Architecture





# Starboard AC Series Systems for Mixed Workloads







- High-performance Flash memory and SSDs can help accelerate reads and writes in mostly-flash and hybrid storage systems
- Multi-level caching architecture accommodates a broad spectrum of Flash devices available on the market
- With only 5% active data footprint, multi-level caching can deliver the performance of the best Flash device for the entire storage system
- Adaptive autonomic tiering, caching and linearization algorithms are required to fulfill this promise



http://www.starboardstorage.com