

Server Side Cache Performance Analysis

Rayan Zachariassen, CTO, NEVEX rayan@nevex.com

Memory What determines performance

- Your Application
- The Kind of Cache: write-through or write-back
- Cache Software
 - What goes in
 - How fast it is
 - What comes out
- Other control points:
 - Hardware
 - Size
 - Load

- The performance of the application using the primary storage? NO
- The performance of the application using the cache device as primary storage!!!
- Remember, this is technical analysis, not an ROI exercise
- Use I/O as experienced by the application

- tpmC: ~70/30 read/write mix
- Assuming reads and writes "cost" the same, maximum performance increase for a writethrough cache is ~3.

- I/O bound application
- Assume reads and writes both cost: 1
- 70 reads + 30 writes = 100
- Write-through caching accelerates reads
- Say read cost goes to 0.1
- 70 reads + 30 writes = 7 + 30 = 37
- Application acceleration = 100/37 = 2.7x

- Write-back caching accelerates reads and writes
- Lets say write cost now goes to 0.1
- 70 reads + 30 writes = 7 + 3 = 10
- Application acceleration = 100/10 = 10x
- Write-back can be done in the controller (very common) or in software

- Lets say the baseline tpmC test already uses write acceleration (due to BB hardware)
- 70 reads + 30 writes = 70 + 3 = 73, baseline
- We now accelerate reads
- 70 reads + 30 writes = 7 + 3 = 10
- Application acceleration = 73/10 = 7.3x

To relate an application benchmark to your situation,

you need to know EVERYTHING

about the application I/O pattern and the platform

"It goes faster"

is not analysis

Micro benchmarks for analysis

Application benchmarks for validation

- The Full Sweep
- Triangle test
- Latency curves
- Noise Rejection

Disk	IO Size	QD	Ю Туре	Read/ Write	IOPS	MB/s	Latency (usec)	Max Latency (msec)	CPU Util (%)
I:	4096		random	read					
I:	8192		random	read					
I:	65536		random	read					
I:	65536		sequential	read					
I:	1048576		sequential	read					
I:	4096		random	write					
I:	8192		random	write					
I:	65536		random	write					
I:	65536		sequential	write					
1:	1048576		sequential	write					

- Run baseline sweeps for primary storage and cache drive, as an application would use them
- Run a sweep for each possible cache option:
 - Primed
 - Noise
 - 1-level or 2-level
 - Other

Run with select queue depths: 1 & 16

- 16 was picked to not run into out-of-CPU issues for a single thread on the hardware
- Understand what the cache has to do
 - Read hits, read misses, write hits, write misses
- Pay attention to what nominal performance is:
 - Like the cache device
 - Like primary storage

- Maintain a constant queue depth but vary the number of threads
- For example use QD 1x16, 2x8, 4x4, 8x2, 16x1
- Use it to characterize effect of application multi-threading, or lack thereof
- Ideal is to see good and consistent performance

SPC-1

- Measure latency at 10%,50%,80%,90%,95%, 100% of max. throughput
- I/O requests are read/write mix
- Includes mirroring, etc.

IOPS-Latency micro benchmark

- Measure latency at each level of concurrency
- One type of I/O at a time, e.g. 4K Random Reads
- No partitioning, no mirroring

We are NOT trying to test the I/O system We ARE trying to test the caching system

Filesystem Performance

Filesystem Performance

Filesystem and Cache Performance

Filesystem and Cache Performance

Filesystem and Ideal Cache Performance?

Filesystem and Ideal Cache Performance!

Sync < Async

Sequential < Random

Delta ~ CPU time

0 is best!

Filesystem and 2-Level Cache Performance 1200 1100 1000 900 800 Latency (us) 700 600 500 400 300 200 100 0 100,000 150,000 200,000 250,000 350,000 400,000 450,000 0 50,000 300,000 IOPS Flash Memory Summit 2012

NEVEX

Filesystem and 2-Level Cache Performance 1200 1100 1000 900 800 Latency (us) 700 600 500 400 300 200 100 Random Sequential 0 100,000 150,000 200,000 250,000 350,000 Ó) 50,000 300,000 400,000 450,000 IOPS Flash Memory Summit 2012

NEVEX

29

Santa Clara, CA

Not good

Not good

Aha!

- Bi-modal performance
- The CPU runs Faster when caching
- Modern multi-core processors are Too Slow
- Device conditioning
- Sync I/O is different from Async I/O
- Hidden caches
- I/O alignment

- What determines performance
- Know what you are comparing to
- Most published benchmarks don't help
- Use micro benchmarks for analysis
- Latency curves are good
- There be traps

Memory Server Side Cache Performance

- Analyze
 - Latency
 - Noise resistance
- Application
- Cache type, size and policies
- Cache device
- Platform OS, Hardware
- Load

It's the difference that matters

Server Side Cache Performance Analysis

Rayan Zachariassen, CTO, NEVEX rayan@nevex.com