

Taking Consumer MLC to Extreme Endurance

Pablo A. Ziperovich

- Talking about a formula while keeping it secret
- Why do we need a recipe?
- The recipe ingredients
- Gathering block statistics
- Recipe implementation
- Example results
- Conclusion

Flash Memory Ahh! That Secret Formula...

You CAN talk about the ingredients while still NOT disclosing the secret formula!

Flash Memory Summit 2012 Santa Clara, CA Secret Sauce

Why do we need a Recipe?

- Flash Endurance (number of cycles) is reduced as flash density increases
- Flash Retention (ability to hold information) is reduced as the flash wears
- We need a way to bridge the gap between what the flash provides and what the SDD requires

• Before we show how to bridge this gap, here is a brief tutorial

Flash Memory Summi Santa Clara, CA

Flash Memory Summit 2012 Santa Clara, CA

Memory The Recipe Ingredients

ERASE

of Bits

Flash Memory Summit 2012 Santa Clara, CA

Flash Memory Summit 2012 Santa Clara, CA

Flash Memory Gathering Block Statistics

Default RLs

Optimized RLs

Gathering Block Statistics

Default RLs

Optimized RLs

- HW & FW working together in the ASIC controller to improve MLC flash reliability throughout the life of the drive
 - Flash trimming for SSD application
 - Flash management through flash lifetime
 - Advanced error correction with DSP

2xnm cMLC: Default Read Levels (3mo@40C retention)

24nm cMLC: Optimized Read Levels (3mo@40C retention)

After Endurance Cycling

After Retention Bake

Total of 2,357,248 sectors read

- 0.0111% of sectors required Read Retry after Endurance
- 0.0098% of sectors required Read Retry after Retention
- Maximum of 1 Read Retry attempt required after Endurance and Retention

Key Performance Metrics	2xnm <u>c</u> MLC Datasheet Spec	2xnmcMLC CeliCare Results
Endurance Cycles	3,000	40,000
Retention (EOL)	1Y@40C	3mo@40C
Read Retry Rate (EOL)	Unspecified	<<1%

- Adding ECC by itself does is not enough to reach extreme endurance
 - More ECC overhead works against you as it increases write amplification, therefore increasing the actual endurance target
- Taking consumer MLC to extreme endurance requires
 - Specialized flash trimming at least on a per-die basis
 - Management of flash as it ages, making adjustments as necessary
 - DSP and ECC techniques

THANK YOU!

Email: pziperovich@stec-inc.com