

Bit Error Analysis on Drives for Data Recovery

Presenter and Analysis: Clint Foster Kroll Ontrack, Inc.

Agenda

- »Introduction and Parameters
- »Overview and high level analysis
- »Specific Patterns
 - Routine
 - Less Frequent
- »Summary

Introduction

- »Why is this research important?
 - Determine ECC effectiveness
 - Improve data recovery success

Parameters of Analysis

- » Customer drives submitted for data recovery
 - Over past 18 months
 - Required raw extraction
- » One NAND device from each drive (not all NAND devices)
- » All based on BCH Codewords (CW's) processed
- » Most are:
 - Two bit-per-cell (MLC) (94%)
 - Removable (USB Stick, SD, etc.)

Category Criteria

Chart Categories (Kroll Ontrack specific)	
Good	 >80% Perfect CWs <1% CWs that were uncorrectable (UNC) or had bit errors > half correction capability
Fair	Neither Good nor Poor
Poor	>25% UNC CW's

Overview Chart

Definitions for Charts

- »t = number of bits code can correct
- Split into four sections to normalize data (t ranges from 2 to 48)
 - t/4, t/2, 3t/4, and t
- »Two additional categories
 - Perfect (no errors)
 - Uncorrectable (too many errors)

Example Good NAND Devices

Example Fair NAND Devices

Example Poor NAND Devices

Patterns Across Pages

- » Comparison of all Pages at same position in Erasure Blocks (EB's)
- » Similar to stacking each EB on top of each other to line up the Pages

Patterns Across Pages Kroll Ontrack. (Consistent and Alternating)

Patterns Across Pages Kroll Ontrack. (By two and by three (3bpc))

Magnitude of Codeword errors (per page) across all EBs

Patterns Across Pages (By four and by eight)

Patterns Across Pages Kroll Ontrack. (By 12 (3bpc))

Non-Frequent Patterns

Patterns Across CWs

- » Comparison of all CW's at same position in pages
- » Similar to stacking each page on top of each other to line up the CW's

Patterns Across CWs

- More than 75% are consistent such as the one above
- » Some NAND devices do show other patterns

Patterns Across CWs

Other Findings

- »Patterns across EB's could be further analyzed as not all EB's written
- No significant difference among NAND devices with:
 - Randomization pattern on Parity only
 - Randomization pattern across pages
 - No randomization pattern

Summary

- »Current ECC codes adequate as 95+% NAND devices from drives considered Good or Fair
- »Many different error patterns exist and with ECC evolving, further research could lead to better performing devices
- »Kroll Ontrack is willing to partner with companies for further investigation.
- Stop by our booth (#721)

Supporting Slides

- » Additional research could be done into EB's in latter part of NAND device
 - Written but no errors
 - Not written to

Supporting Slides

