

# An LDPC-Enabled Flash Controller in 40 nm CMOS

# Marvell Semiconductor Engling Yeo





- Error correction requirements
- LDPC Codes
- ECC architecture
- SOC integration
- Conclusion





### Error correction requirements

- LDPC Codes
- ECC architecture
- SOC integration
- Conclusion





Santa Clara, CA







- Raw BER of device
  progressively decreases as a
  result of :
  - Reduced device sizes
  - Reduced power supplies
  - Reduced R/W access time
  - Aging device
- Performance of BCH(t=76)
  decoder
  - Achieves SFR <  $10^{-6}$  @ RBER= 4 ×  $10^{-3}$





#### **Tolerable Sector Failure Rate**



6



- Error correction requirements
- LDPC Codes
- ECC architecture
- SOC integration
- Conclusion





- Each event occurs with some prior probability.
- Posterior probability based on inference from a number of related events.



# Constrained Coding and LDPC Decoding

- Each set represents a group of constrained bits
  - e.g. even parity, cyclic codewords
- Decoding based on inferences passed between adjacent neighbors



Flash Memory Summit 2012 Santa Clara, CA

Fla





- Advantages:
  - Best class of codes to approach theoretical limits of error correction strengths.
  - Well-studied theoretical approaches in the last decade.
  - Has been deployed in magnetic storage since 2007.
  - Choice error correction codes e.g. IEEE 802.11N, AC, ITU G.hn, 10GBase-T, DVB-S2, etc.
- Disadvantages:
  - Difficult and intractable VLSI implementations.
  - Higher power dissipation than traditional BCH solutions.





- More stringent demands for error correction capabilities tips the favor towards LDPC decoder.
- LDPC Decoders can provide flexibility in:
  - Throughput. Exploit inherent parallel nature of LDPC decoding
  - Complexity. Tradeoff decoding complexity against error correction strength.







12





#### **Correction strength**

• LDPC decoders have a higher initial barrier, but complexity does not increase as quickly as BCH decoders at higher correction strengths.





- Error correction requirements
- LDPC Codes
- ECC architecture
- SOC integration
- Conclusion





- Exploits unique characteristic of Solid State Memory:
  Data reliability degrades as device ages.
- At the beginning of life, reliability is typically very good.
- However, towards the end of life, the number of blocks that require extensive ECC operation to recover the data becomes higher.





# **Reliability-Aware LDPC Architecture**



Two modes of LDPC decoding with BCH Decoding.

- Low Power mode (LP-LDPC) can be used with high reliability data (RBER <  $10^{-3}$ ). 1.
- Strong Correction mode (SC-LDPC) provides more error correction, with increased 2. power consumption
- 3. A low-correction BCH decoder provides guard against weaker performance of LP-LDPC decoder. Flash Memory Summit 2012

Santa Clara, CA





- Pros:
  - Iow power
  - Iow complexity,
- Cons:
  - Possible performance degradation at the end of life.



MAR





LDPC-based ECC outperforms existing BCH code





- Error correction requirements
- ECC architecture
- LDPC Codes
- SOC integration
- Conclusion





- 40 nm CMOS process
- Enhanced Reliability-Aware LDPC ECC engine
- Support for two channels of NAND flash devices with 4 Chip Enable (CE) per channel
- Support for ONFI 1, ONFI 2.0, ONFI 2.2, ONFI 2.3, and Toggle mode
- Support for MMC and embedded MMC (eMMC) host interfaces
- Embedded ARM CPU core
  - ARM V6T2 architecture with Thumb-2 support







MARVELL®















- Error correction requirements
- LDPC Codes
- ECC architecture
- SOC integration
- Conclusion





- Reliability-aware LDPC architecture combines a low-power mode with a strong correction mode to provide optimal correction-power tradeoff at various stage of NAND life cycle.
- Lower power dissipation than traditional BCH ECC.
- See you at Marvell Semiconductor Booth 800-802

