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FlashMemory The Real Issue

 Want SSD Performance & Latency
 Need Enterprise Redundancy

 Use Commodity Flash Products
 Non Proprietary
o Customer Replaceable
 No Technology “Lock In”
 Lowest $/TB

* Allow Seamless Levels of Storage
 Low $/TB
* Low $/IOP
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AashMemory SSD Large Sequential
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FashMemory Flash Performance Takeaways

» Flash Performance is All over the Map

» The Technology Changes Fast

» Tradeoffs between Cost, Performance and Life
» Investment Protection



FlashMemory Typical Controller IOPs Throttling
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FashMemory Typical Controller BW Throttling
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FflashMemory Storage Fusion Architecture History

» Previous Experience with Silicon-Based RAID-3 Arrays
» High Bandwidth
» Very consistent Quality of Service (Bandwidth and Latency)
» Ground Up “Blank Sheet of Paper” Architecture in 2007
» Typical Five Year Maturity Cycle
» Address Emerging Applications
« HPC
» Data-Intensive Cloud Applications
» Big Data Analytics
» Address the Emerging Technologies
» Multi-Core Processors
* High IOP Non Volatile Memory Technologies
» Server Virtualization
» Scale Out

Ground-Up Design
Big Data Optimized
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FashMemory SEA — Details
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Ground Up Design Exploiting Emerging Technologies
Optimized for Ultra-High IOPs & Bandwidth  sxsszuss JTTITTT]

» Kernel Bypass for all 10 Operations

 Real-Time NUMA Scheduler Minimizes Latency [ a et e
 Built to Exploit All Available CPU Cores

« BW, IOPs and Mixed Workload Configurations T . N
» Fully Parallel /O Execution Engine Switching " switehing
e No Lock Architecture —

» Portable Code
* Rapid Time To Market
» Optimizations around Linux architectures

Highest levels of Performance & QoS
DDN device drivers accelerate 1/O
Optional Server Virtualization Brings Big Data Closest to Processing
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AashMemory Typical Approaches
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Prohibit Easy Portability Add Significant Latency



FashMemory Low Latency — No Context Switching
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FlaSIIMemory A Scalable & Abstractable 1/0
=@ © Delivery Architecture

External Block-Based Applications Internal VM Clients

InfiniBand RDMA Driver Fibre Channel Driver Memory DMA Driver

n
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S . User Space
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Z /O Routirl? .J =28 Owns The Kernel &
o System ) Prohibits Disruption
E g (State Machine)
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I/O Routing, RAID Services, Cache Management & Disk Virtualization
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HashMemoy SFA12K Architecture
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» 40GB/S Throughput
» 1.4M IOPs to SSD

» DirectFlash Caching
Acceleration

Scale Up To Any #
Of CPU Cores

Today: 8/Socket
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FlashMemory SFA Controller IOPs — No Throttling

Small Block IOPs
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FlashMemory SFA Linear Scaling (SFA10K)
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FlashMemory SFA Controller — No BW Throttling

Bandwidth (MB/S)
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SSD Capability —=Typical Storage Controller Capability

SFA with SSD



FashMemory SFA Linear Scaling (SFA10K)
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FlashMemory Our Surprise: 4KI_3 /O (SFAlQK)
emoma © | atency That Defies Convention
e Axs+2:Pliant800GBl  1x4+1: Pliant 800GB

oo Aglaencys) _______________AvgLlatency (us)

% 1 75.87 79.15
; 2 62.77 69.78
4 72.58 76.89

g 8 78.21 84.97
o 16 86.80 90.98
% 32 95.67 96.79
oY 64 102.17 107.89
128 99.88 105.70

I 1 x 8+2: Pliant 800GB 1 x 4+1: Pliant 800GB
| oD Avglatency(@s)  AvgLatency (us)

@ 1 324.78 323.02
é':’ 2 156.92 156.07

4 72.91 Ll
g 8 37.86 38.15
S 16 19.97 20.34
= 2% 10.38 11.16
X 64 6.51 7.58

128 6.89 8.23



FlashMemory Actual Case Studies

Leading U.S.

Cloud-Based

Applications
Provider

SFA10K-M Systems

QDR InfiniBand Connected
114 x 800GB SSDs

» Rich Imagery Processing
Application
» GPFS File System

» Mix of Small & Large File
Requests (mostly small)

» SSD System Bake-Off

» DDN Selected Due To:

 Multi-Dimensional Performance
* Low Latency & Wall Clock
* Lowest Data Center Footprint
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FlashMemory Conclusions

» Get Performance and Redundancy

» SSDs Can Compete With The Right Architecture
» Lots Of Options: Don’t Lock Yourself In

» Don't artificially limit your performance

» Big Data Requires All Varieties of Performance
« We don’t know what we don’t know...

7127/2012
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FlashMemory
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7127/2012

Questions ?7?77?
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