

A State Machine Architecture for High-Efficiency, Low-Latency SS Media Performance Extraction

Bret S. Weber
DataDirect Networks

Memory The Real Issue

- Want SSD Performance & Latency
- Need Enterprise Redundancy
- Use Commodity Flash Products
 - Non Proprietary
 - Customer Replaceable
 - No Technology "Lock In"
 - Lowest \$/TB
- Allow Seamless Levels of Storage
 - Low \$/TB
 - Low \$/IOP

Memory SSD Small Block IOPs

Memory SSD Large Sequential

Memory Flash Performance Takeaways

- ▶ Flash Performance is All over the Map
- ▶ The Technology Changes Fast
- ▶ Tradeoffs between Cost, Performance and Life
- ▶ Investment Protection

Memory Typical Controller IOPs Throttling

Memory Typical Controller BW Throttling

Bandwidth (MB/S)

Flash Memory Storage Fusion Architecture History

- Previous Experience with Silicon-Based RAID-3 Arrays
 - High Bandwidth
 - Very consistent Quality of Service (Bandwidth and Latency)
- Ground Up "Blank Sheet of Paper" Architecture in 2007
 - Typical Five Year Maturity Cycle
- Address Emerging Applications
 - HPC
 - Data-Intensive Cloud Applications
 - Big Data Analytics
- Address the Emerging Technologies
 - Multi-Core Processors
 - High IOP Non Volatile Memory Technologies
 - Server Virtualization
 - Scale Out

Ground-Up Design Big Data Optimized

- Ground Up Design Exploiting Emerging Technologies
- Optimized for Ultra-High IOPs & Bandwidth
 - Application Space Code
 - Kernel Bypass for all IO Operations
 - Real-Time NUMA Scheduler Minimizes Latency
 - Built to Exploit All Available CPU Cores
 - BW, IOPs and Mixed Workload Configurations
- ► Fully Parallel I/O Execution Engine
 - No Lock Architecture
- Portable Code
 - Rapid Time To Market
 - Optimizations around Linux architectures
- Highest levels of Performance & QoS
- DDN device drivers accelerate I/O
- Optional Server Virtualization Brings Big Data Closest to Processing

RAID 5,6

SFA RAID 5.6

SFA RAID 1

Typical Approaches

In-Kernel Dependencies Prohibit Easy Portability

Kernel Context Switches Add Significant Latency

Low Latency – No Context Switching

DDN User Space Implementation

- No Context Switching
- Low Latency IO
- Predictable Performance
- High Speed Routing Architecture

Typical User Space Implementation

Complete Storage OS

A Scalable & Abstractable I/O Delivery Architecture

Internal VM Clients

InfiniBand RDMA Driver

Fibre Channel Driver

Memory DMA Driver

Front-End Services Abstraction

SFA JIPC: Non-Preemptive I/O Routing System

User Space
I/O Scheduler
Owns The Kernel &
Prohibits Disruption
(State Machine)

Back-End Services Abstraction

I/O Routing, RAID Services, Cache Management & Disk Virtualization

12

Flash Memory SFA12K Architecture

- ► 40GB/S Throughput
- ▶ 1.4M IOPs to SSD
- DirectFlash Caching Acceleration

Memory SFA Controller IOPs - No Throttling

Memory SFA Linear Scaling (SFA10K)

random aligned read, Rate (IO/s), Varying Pool Count

Memory SFA Controller – No BW Throttling

Bandwidth (MB/S)

Memory SFA Linear Scaling (SFA10K)

random aligned read, Rate (IO/s), Varying Pool Count

Previous Generation Product

Our Surprise: 4KB I/O (SFA10K) Latency That Defies Convention

		1 x 8+2: Pliant 800GB	1 x 4+1: Pliant 800GB
Random Write	QD	Avg Latency (µs)	Avg Latency (μs)
	1	75.87	79.15
	2	62.77	69.78
	4	72.58	76.89
	8	78.21	84.97
	16	86.80	90.98
	32	95.67	96.79
	64	102.17	107.89
	128	99.88	105.70

		1 x 8+2: Pliant 800GB	1 x 4+1: Pliant 800GB
Random Read	QD	Avg Latency (μs)	Avg Latency (μs)
	1	324.78	323.02
	2	156.92	156.07
	4	72.91	73.11
	8	37.86	38.15
	16	19.97	20.34
	32	10.38	11.16
	64	6.51	7.58
	128	6.89	8.23

Actual Case Studies

SFA10K-M Systems

QDR InfiniBand Connected

114 x 800GB SSDs

- Rich Imagery Processing Application
- ▶ GPFS File System
- Mix of Small & Large File Requests (mostly small)
- ► SSD System Bake-Off
- DDN Selected Due To:
 - Multi-Dimensional Performance
 - Low Latency & Wall Clock
 - Lowest Data Center Footprint

- ► Get Performance and Redundancy
- ▶ SSDs Can Compete With The Right Architecture
- ► Lots Of Options: Don't Lock Yourself In
- Don't artificially limit your performance
- Big Data Requires All Varieties of Performance

We don't know what we don't know...

7/27/2012

Questions ???

7/27/2012