

## Enterprise SSDs in Scale-Out NAS Design

Rob Peglar CTO, Americas EMC Isilon

Santa Clara, CA USA August 2012



### A Blast from the Past – Happy 31st! August 1981





## **IBM Model 5150 Specifications**

| SUMMIT     |                                                                                       |
|------------|---------------------------------------------------------------------------------------|
| Processor  | Intel 8088                                                                            |
| Speed      | 4.77 MHz                                                                              |
| RAM        | 16KB                                                                                  |
| Storage    | Cassette Tape, optionally 5.25" 160KB floppy drives                                   |
| Expansion  | 5 expansion slots                                                                     |
| Bus        | Industry Standard Architecture (ISA)                                                  |
| Video      | Initially CGA (320x200x16 color, 640x200x2 color)<br>or monochrome (80x25 text only)) |
| I/O        | Parallel, Serial                                                                      |
| OS         | Microsoft Basic 1 (ROM)                                                               |
| Killer App | VisiCalc 3                                                                            |



- Today, we have CPUs which are ~1,000x
  - 1's of GHz clocks instead of 1's of MHz
- Today, we have RAM which is 10,000,000x
  - 100's of GB instead of 10's of KB
  - In some cases, 100,000,000x (1's of TB)
- Today, we have storage which is ~20,000,000x
  - 3 TB per drive instead of 160 MB
- So what's the problem?



- In a perfect world, I/O would not be necessary
  - 1<sup>st</sup> level store would hold everything, forever
- Access Density IOPS/GB
  - Getting WORSE over time for rotating magnetic
  - Will it get worse over time for non-rotating SSD?
- Example:
  - IBM Model 5150 625 KB/s, 8.33 ms, 3,600 RPM
     IOPS/GB = 20 / .001 = 20,000
  - Today 170,000 KB/s, 2.9 ms, 15,000 RPM
     IOPS/GB = 200 / 300 = 0.667



- Technology Choices Boiled Down to Two
- NAND Flash
  - Slow (writes), cheap, dense, non-volatile
  - JFFSx
  - ONFI
  - Next up Phase Change Memory (PCM), ReRAM, Spintronics, (?)
  - Is it cache, or is it disk?
- DRAM
  - Very fast, dense, not cheap, volatile
  - No internal file system
  - Is it cache, or is it disk?



### **NAS** Thoughts

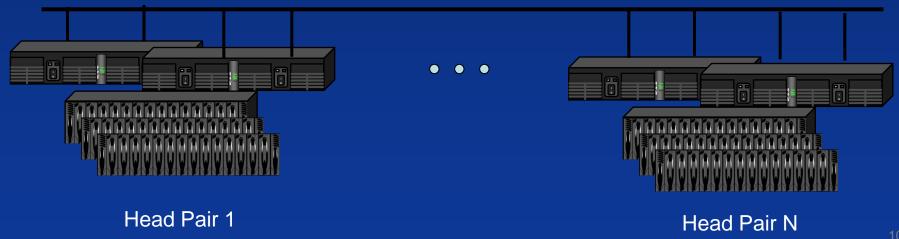
- Filesystems don't want disks
  - They want space (more is better)
- Filesystems don't want IOPS
  - They want time (less is better)
- Filesystems do block I/O because they have to
  - But they don't really want to
- Where to use SSD in NAS?
  - Backing store for file data?
  - Read cache for files?
  - Write cache for files?
  - Backing store for metadata?
- Answer think about the way filesystems work



#### Unstructured data

- Huge collections of files (10s of billions)
- Streaming ingest from disparate sources
- Parallel access both read and write
- Fast enumeration of metadata is critical (save time)
- Automated tiering is critical (save \$)
- Structured data
  - So 2011
- Filesystems have key elements
  - It's all about the metadata!
  - Scale-out metadata over scale-out data

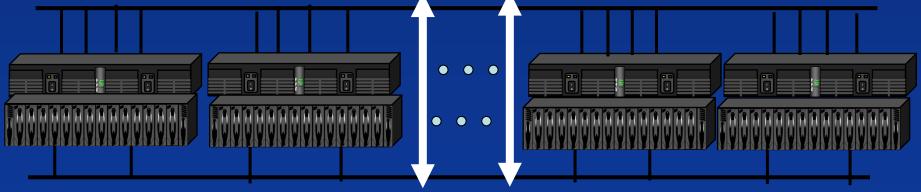
Flash Kenory How should I Design my NAS for SSD?


- SSD introduces a new complexity into NAS
  - Or does it?
- SSD <u>should be used to store metadata</u>
- SSD as a file data cache?
  - Read cache nope
    - Random read workloads too many cache misses at scale, wasted resource, pathologic use case
    - Sequential read workloads might as well do aggressive read-ahead on HDD into DRAM, streaming
  - Write cache nope
    - Flash is too slow, at least the type NAS users will pay for
    - Poor match with wear characteristics

That leaves metadata – which is a perfect fit



## **Two Types of NAS Storage**


- Type 1 Dual-access captive storage
  - Pairs of controller heads integrated with disk shelves
- Clustering is non-optimal
  - Flaw Inter-head latency over enet to reach captive disks
  - Flaw RAID groups & sparing across pairs (can't do it)
  - Flaw multiple tiny filesystems, captive to head pairs



# Two Types of NAS Storage

### Type 2 - Multi-access non-captive storage

- N nodes networked with low-latency interconnect
  - Client traffic on Ethernet, disk traffic on IB
- Clustering is optimal scale CPUs & disks
  - Any-to-any communication to CPUs, RAM & disks
  - Single filesystem, single namespace, file-level ECC
  - Metadata in SSD fast enumeration, attribute retrieval
    You want to enumerate 10 billion files from SATA HDD? Nope!





### THANK YOU

Q&A