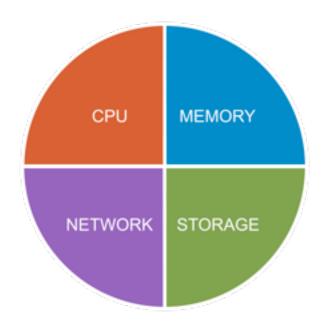


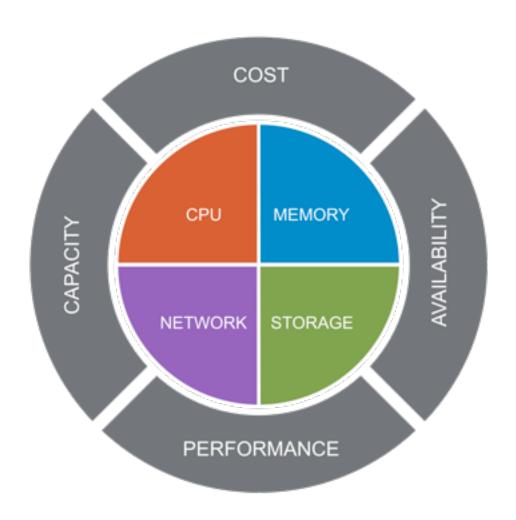
Deployment and Bottlenecks of Flash and Virtualization:

Flash and VDI Considerations

Dr. Alex Danilychev Citrix Systems, Inc.


- Single-tenant VDI Citrix XenDesktop
- Multi-tenant VDI Citrix XenApp

Flash Memory Keeping it in perspective...



Flash Memory Keeping it in perspective...

Flash Memory Keeping it in perspective...

- Cost per virtual user workload:
 - ~\$1,000 for single-tenant
 - ~\$300 for multi-tenant

As high as 80% dependent on storage

- Cost per virtual user workload:
 - ~\$1,000 for single-tenant
 - ~\$300 for multi-tenant
 - As high as 80% dependent on storage
- Predominant 4-8k block size

- Cost per virtual user workload:
 - ~\$1,000 for single-tenant
 - ~\$300 for multi-tenant
 - As high as 80% dependent on storage
- Predominant 4-8k block size
- 80% random writes vs. 20% reads

- Cost per virtual user workload:
 - ~\$1,000 for single-tenant
 - ~\$300 for multi-tenant
 - As high as 80% dependent on storage
- Predominant 4-8k block size
- 80% random writes vs. 20% reads
- Sizing per 100 users:

600-800Gb for single-tenant

200-300Gb for multi-tenant

2,000 IOPS, can be as high as 5,000

Flash Memory IO Optimization Techniques

Flash Memory IO Optimization Techniques

Tune OS Image

Memory IO Optimization Techniques

- Tune OS Image
- Favor multi-tenant VDI and achieve 3 to 5 times reduction of IO

Memory IO Optimization Techniques

- Tune OS Image
- Favor multi-tenant VDI and achieve 3 to 5 times reduction of IO
- "Derandomize" IO

Memory IO Optimization Techniques

- Tune OS Image
- Favor multi-tenant VDI and achieve 3 to 5 times reduction of IO
- "Derandomize" IO
- Consider caching and tiering

Flash Memory Flash vs. Mechanical Disks

- 8 SAS 15k disks
 - ~ 1,000Gb
 - ~ 3,000 IOPS

Flash Memory Flash vs. Mechanical Disks

- 8 SAS 15k disks
 - ~ 1,000Gb
 - ~ 3,000 IOPS

- Single SSD
 - ~ 200Gb
 - ~ 20,000 IOPS

Advantages:

Advantages:

Unmatched IO for 4-8k random writes

Advantages:

- Unmatched IO for 4-8k random writes
- •Supports emerging GPU virtualization applications, demanding high IO per user

Advantages:

- Unmatched IO for 4-8k random writes
- •Supports emerging GPU virtualization applications, demanding high IO per user

Advantages:

- Unmatched IO for 4-8k random writes
- •Supports emerging GPU virtualization applications, demanding high IO per user

Challenges:

Capacity

Advantages:

- Unmatched IO for 4-8k random writes
- •Supports emerging GPU virtualization applications, demanding high IO per user

- Capacity
- Cost

Advantages:

- Unmatched IO for 4-8k random writes
- •Supports emerging GPU virtualization applications, demanding high IO per user

- Capacity
- Cost
- Predictable longevity

Advantages:

- Unmatched IO for 4-8k random writes
- •Supports emerging GPU virtualization applications, demanding high IO per user

- Capacity
- Cost
- Predictable longevity
- Garbage collection

Q&A