

IMPROVE SSD PERFORMANCE WITH ULTRACAPACITOR POWER BACKUP

Jens Keiser - Sr. Manager, Product Marketing Dave Wright - Director, Application Engineering Maxwell Technologies August 23, 2012

Flash Memory Maxwell Industry Involvement

- Ultracapacitors, Electric Double Layer Capacitors, Supercapacitors are synonyms
- Operating principle
 - An electronic charge accumulator having extreme capacitor plate specific area and atomic scale charge separation distance.
 - No chemical reactions
- Performance
 - 100k to >1M charge/ discharge cycles
 - Up to 15 year DC life

Graphic: IEEE Spectrum, Jan 2005

Intellectual Property:

- ~ 55 Patents
- ~ 20 Patents pending

Separator Electrode Electrolyte Electrode $\label{eq:capacitance} Capacitance \sim \frac{Surface Area}{Separation Distance}$ **Surface Area** Thickness of Helmholz layer ~ 1nm Carbon powder surface area up to 3,000m²/g

Capacitors up to 3,000F

Flash Memory Summit 2012 Santa Clara, CA

Basic material is carbon

Charred Carbon

Activated Carbon

Maxwell Electrode

Maxwell offers a variety of sizes and configurations of ultracapacitors.

Specification	PC Series	HC Series	BC Series	K2 Series
Capacitance (F)	10	1–150	310–350	650–3,000
Rated Voltage (V DC)	2.5	2.7	2.7	2.7
ESR, DC (mohm)	180	14–700	2.2–3.2	0.29–0.8
Leakage current (mA)	0.04	0.006–0.5	0.3–0.45	1.5–5.2
Emax (Wh/kg)	1.4	0.9–4.3	5.2 – 5.9	4.1 - 6.0
Pmax (W/kg)	660	2400 - 7000	9500 – 14,000	12,000 - 14,000

Power and Energy Density – Ragone Plot

Source: ElectronicDesign.com November 15, 2007

Ultracapacitor Aging Behavior

- Ultracapacitors exhibit a gradual decline in performance over time
 - Decrease in capacitance
 - Increase in ESR
- "End of Life" becomes a defined point not an actual failure
- Maxwell defines EOL when one of two things happen:
 - Decrease in capacitance below 70 80% of rated value
 - Increase in ESR to 200% of rated value
- In practice, the decrease in capacitance is usually the limiting factor
- Parts still function, but these parameters are degraded
- Decrease in performance must be accounted for when doing initial system design

Mean Service Life vs. Temperature

Flash Memory Summit 2012 Santa Clara, CA

Need for Backup Power in Enterprise SSDs

- SSDs used for
 - Computation Intensive Applications
 - Online Transaction Processing (OLTP)
 - Database Warehousing
 - Image Processing
- Faster Input/Output performance a key metric
- Larger DRAM caches improve performance
 - More backup power required

SLOW

Source: IMEX <u>Research.com</u> ©2011. With permission.

- Backup Requirement = 3W
- Minimum Backup Time = 2 seconds
- Starting Voltage = 2.2V
- Ending Voltage = 1.1V
- Required Energy
 - 3W x 2 seconds = 6J
- Minimum Capacitance
 - (2x6)/(2.2^2-1.1^2)=3.3F

- C=7.2F
- R=360mΩ
- Requirement not met

- C=5F
- R=120mΩ
- Requirement met

ry Keys to a Successful Design

- Manage temperature carefully
 - Dominant stressor for ultracapacitor life
- Ensure that power requirements are within the capability of device ESR
- De-rate capacitance and ESR to end-of-life values
- Pay close attention to specification details
 - All 10F ultracapacitors are not equal

Flash Memory A Current Implementation

- Ultracapacitor technology is relatively new
- As applications grow, improvement is likely in
 - Cost
 - ESR (Power Density)
 - Operating Voltage (Energy Density)

- Inclusion of DRAM cache in Enterprise SSD requires backup power
- Ultracapacitors are accepted devices to provide required backup capability over SSD life expectancies
- Attention to pertinent device parameters can ensure successful performance