Tackling Intracell Variability in TLC Flash Through Error Correction Coding

Ryan Gabrys,Lara Dolecek

Department of Electrical Engineering UCLA

1 / 19

 209

- 2 [Empirical Data](#page-12-0)
- 3 [Error-Correction Model](#page-22-0)
- 4 [Error-Correcting Codes](#page-37-0)
- 5 [Performance Results](#page-49-0)

6 [Conclusion](#page-55-0)

Technical constraint

• Flash memory is comprised of a set of floating gate cells.

イロト 不優 ト 不思 ト 不思 トー 温 2990 3 / 19

Technical constraint

- Flash memory is comprised of a set of floating gate cells.
- Information is stored by controlling the number of electrons stored within each cell.

3 / 19

 Ω

イロト イ部 トイ君 トイ君 トッ 君

Technical constraint

- Flash memory is comprised of a set of floating gate cells.
- Information is stored by controlling the number of electrons stored within each cell.

3 / 19

 Ω

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ X 경

• Density Per Cell

Technical constraint

- Flash memory is comprised of a set of floating gate cells.
- Information is stored by controlling the number of electrons stored within each cell.

3 / 19

 Ω

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{B} \mathbf{B}$

- **•** Density Per Cell
	- Single-Level-Cell (SLC) 1 bit per cell.

Technical constraint

- Flash memory is comprised of a set of floating gate cells.
- Information is stored by controlling the number of electrons stored within each cell.

3 / 19

 209

- Density Per Cell
	- Single-Level-Cell (SLC) 1 bit per cell.
	- Multiple-Level-Cell (MLC) 2 bits per cell.

Technical constraint

- Flash memory is comprised of a set of floating gate cells.
- Information is stored by controlling the number of electrons stored within each cell.
- **•** Density Per Cell
	- Single-Level-Cell (SLC) 1 bit per cell.
	- Multiple-Level-Cell (MLC) 2 bits per cell.
	- Triple-Level-Cell (TLC) 3 bits of information per cell.

3 / 19

 Ω

Technical constraint

- Flash memory is comprised of a set of floating gate cells.
- Information is stored by controlling the number of electrons stored within each cell.
- **•** Density Per Cell
	- Single-Level-Cell (SLC) 1 bit per cell.
	- Multiple-Level-Cell (MLC) 2 bits per cell.
	- Triple-Level-Cell (TLC) 3 bits of information per cell.

3 / 19

 Ω

Previous work

- Recent error-correcting codes for Flash memory
	- T. Kløve, B. Bose, N. Elarief, "Systematic Single Limited Magnitude Error Correcting Codes for Flash Memories," 2011.
	- Y. Cassuto et al., "Codes for Multi-Level Flash Memories: Correcting Asymmetric Limited-Magnitude Errors," 2010.
	- Y. Maeda and H. Kaneko, "Error Control Coding for Multilevel Cell Flash Memories Using Nonbinary Low-Density Parity-Check Codes," 2009.

Previous work

- Recent error-correcting codes for Flash memory
	- T. Kløve, B. Bose, N. Elarief, "Systematic Single Limited Magnitude Error Correcting Codes for Flash Memories," 2011.
	- Y. Cassuto et al., "Codes for Multi-Level Flash Memories: Correcting Asymmetric Limited-Magnitude Errors," 2010.
	- Y. Maeda and H. Kaneko, "Error Control Coding for Multilevel Cell Flash Memories Using Nonbinary Low-Density Parity-Check Codes," 2009.
- Tensor product codes
	- P. Chaichanavong and P.H. Siegel, "A Tensor-Product Parity Code for Magnetic Recording," 2006.
	- J.K. Wolf, "On Codes Derivable from the Tensor Product of Check Matrices," 1965.

Voltage Levels for TLC

- Most Significant Bit MSB
- **Center Significant Bit CSB**
- **•** Least Significant Bit LSB

High Voltage

Data Collection

Below is an image of the custom board from UCSD used to collect the data.

メロメ メ御き メミメ メミメ **E** 2990 6 / 19

Data Collection

- Below is an image of the custom board from UCSD used to collect the data.
- \bullet On the first of every 100 P/E cycles the following was performed:

Data Collection

- Below is an image of the custom board from UCSD used to collect the data.
- \bullet On the first of every 100 P/E cycles the following was performed:
	- **1** Erase the block. (block= 2^{20} cells)

Data Collection

- Below is an image of the custom board from UCSD used to collect the data.
- \bullet On the first of every 100 P/E cycles the following was performed:
	- **1** Erase the block. (block= 2^{20} cells)
	- **2** Read back the errors.

E

Data Collection

- Below is an image of the custom board from UCSD used to collect the data.
- \bullet On the first of every 100 P/E cycles the following was performed:
	- **1** Erase the block. (block= 2^{20} cells)
	- **2** Read back the errors.
	- **3** Write random data.

E

Data Collection

- Below is an image of the custom board from UCSD used to collect the data.
- \bullet On the first of every 100 P/E cycles the following was performed:
	- **1** Erase the block. (block= 2^{20} cells)
	- **2** Read back the errors.
	- **3** Write random data.
	- **4** Read back the errors.

Data Collection

- Below is an image of the custom board from UCSD used to collect the data.
- \bullet On the first of every 100 P/E cycles the following was performed:
	- **1** Erase the block. (block= 2^{20} cells)
	- **2** Read back the errors.
	- **3** Write random data.
	- **4** Read back the errors.
- On the other 99 cycles, the block was erased and all-zeros were written.

∴ ≊

Raw Error Rate

K ロ X K @ X K 할 X K 할 X (할 299 7 / 19

Error Patterns Within a Symbol

Error Patterns Within a Symbol

Idea: Design a code for observed intracell variability.

8 / 19

 QQ

K ロ X K @ X K 경 X X 경 X X 경

Code Properties

• Codes are over alphabet of size $q = 2^m$, where m is some positive integer and each symbol represents a Flash cell.

9 / 19

 Ω

E

イロメ イ団メ イモメ イモメー

Code Properties

• Codes are over alphabet of size $q = 2^m$, where m is some positive integer and each symbol represents a Flash cell.

9 / 19

 Ω

イロト 不優 ト 不思 ト 不思 トー 理

 \bullet A symbol is a binary length- m vector.

Code Properties

- Codes are over alphabet of size $q = 2^m$, where m is some positive integer and each symbol represents a Flash cell.
- \bullet A symbol is a binary length- m vector.
- \bullet A codeword is *n* binary length-*m* vectors so the result is a length-nm vector.

9 / 19

 209

イロト 不優 ト 不思 ト 不思 トー 理

Code Properties

- Codes are over alphabet of size $q = 2^m$, where m is some positive integer and each symbol represents a Flash cell.
- \bullet A symbol is a binary length- m vector.
- \bullet A codeword is *n* binary length-*m* vectors so the result is a length-nm vector.

9 / 19

 209

 $\mathbf{A} \cap \mathbf{D} \rightarrow \mathbf{A} \cap \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B}$

• Example over alphabet of size 8: $(45702) - (100101111000010)$

Error Vectors

Definition (Bit-Error Vector)

The length-nm vector $\mathbf{e} = (\mathbf{e}_0, \mathbf{e}_1, \dots, \mathbf{e}_{n-1})$, where each m-bit vector \mathbf{e}_i represents a symbol of size 2^m , is a $[t; \ell]$ -bit-error-vector if

Error Vectors

Definition (Bit-Error Vector)

The length-nm vector $\mathbf{e} = (\mathbf{e}_0, \mathbf{e}_1, \dots, \mathbf{e}_{n-1})$, where each m-bit vector \mathbf{e}_i represents a symbol of size 2^m , is a $[t; \ell]$ -bit-error-vector if

10 / 19

 Ω

B

メロメ メ部 メメ きょうくきょう

$$
\bullet \: |\{i: \mathbf{e}_i \neq \mathbf{0}\}| \leq t.
$$

Error Vectors

Definition (Bit-Error Vector)

The length-nm vector $\mathbf{e} = (\mathbf{e}_0, \mathbf{e}_1, \dots, \mathbf{e}_{n-1})$, where each m-bit vector \mathbf{e}_i represents a symbol of size 2^m , is a $[t; \ell]$ -bit-error-vector if

10 / 19

 Ω

画

メロメ メ部 メメ きょうくきょう

\n- $$
|\{i : \mathbf{e}_i \neq \mathbf{0}\}| \leq t
$$
\n- $\forall i, wt(\mathbf{e}_i) \leq \ell$
\n

Error Vectors

Definition (Bit-Error Vector)

The length-nm vector $\mathbf{e} = (\mathbf{e}_0, \mathbf{e}_1, \dots, \mathbf{e}_{n-1})$, where each m-bit vector \mathbf{e}_i represents a symbol of size 2^m , is a $[t; \ell]$ -bit-error-vector if

$$
\bullet \, |\{i : \mathbf{e}_i \neq \mathbf{0}\}| \leq t.
$$

$$
\bullet \ \forall i, wt(e_i) \leq \ell.
$$

Definition (Bit-Error-Correcting Code)

A code C is a $[t; \ell]$ -bit-error-correcting code if it can correct any $[t; \ell]$ -bit-error-vector.

Error Vectors (ctd.)

Definition (Graded Bit-Error Vector)

The length-nm vector $\mathbf{e} = (\mathbf{e}_0, \mathbf{e}_1, \dots, \mathbf{e}_{n-1})$, where each m-bit vector e_i represents a symbol of size 2^m , is a $[t_1, t_2, \ell_1, \ell_2]$ -bit-error-vector if

Error Vectors (ctd.)

Definition (Graded Bit-Error Vector)

The length-nm vector $\mathbf{e} = (\mathbf{e}_0, \mathbf{e}_1, \dots, \mathbf{e}_{n-1})$, where each m-bit vector e_i represents a symbol of size 2^m , is a $[t_1, t_2; \ell_1, \ell_2]$ -bit-error-vector if $\bigcup |{i : e_i \neq 0}| \leq t_1 + t_2.$

11 / 19

Error Vectors (ctd.)

Definition (Graded Bit-Error Vector)

The length-nm vector $\mathbf{e} = (\mathbf{e}_0, \mathbf{e}_1, \dots, \mathbf{e}_{n-1})$, where each m-bit vector e_i represents a symbol of size 2^m , is a $[t_1, t_2; \ell_1, \ell_2]$ -bit-error-vector if $\bigcup |{i : e_i \neq 0}| \leq t_1 + t_2.$ \bullet $\forall i$, wt(\mathbf{e}_i) < ℓ_2 .

11 / 19

Error Vectors (ctd.)

Definition (Graded Bit-Error Vector)

The length-nm vector $\mathbf{e} = (\mathbf{e}_0, \mathbf{e}_1, \dots, \mathbf{e}_{n-1})$, where each m-bit vector e_i represents a symbol of size 2^m , is a $[t_1, t_2; \ell_1, \ell_2]$ -bit-error-vector if $\bigcup |{i : e_i \neq 0}| \leq t_1 + t_2.$ \bullet $\forall i$, $wt(e_i) \leq \ell_2$. $\big\{ i : wt(e_i) > \ell_1 \} \big| \leq t_2.$

11 / 19

 Ω

Error Vectors (ctd.)

Definition (Graded Bit-Error Vector)

The length-nm vector $\mathbf{e} = (\mathbf{e}_0, \mathbf{e}_1, \dots, \mathbf{e}_{n-1})$, where each m-bit vector e_i represents a symbol of size 2^m , is a $[t_1, t_2; \ell_1, \ell_2]$ -bit-error-vector if $\bigcup |{i : e_i \neq 0}| \leq t_1 + t_2.$ \bullet $\forall i$, wt(\mathbf{e}_i) < ℓ_2 . \bigotimes $|\{i : wt(e_i) > \ell_1\}| < t_2.$

11 / 19

イロメ イ何メ イヨメ イヨメート

Example of a $[5, 2; 1, 3]$ -bit-error-vector: (100 100 000 010 111 001 000 111 010).

Correcting Weighted Error Patterns

Definition (Graded Bit-Error-Correcting Code)

A code C is a $[t_1, t_2; \ell_1, \ell_2]$ -bit-error-correcting code if it can correct any $[t_1, t_2, \ell_1, \ell_2]$ -bit-error-vector.

> イロト イ部 トイモト イモトー Ω 12 / 19

Correcting Weighted Error Patterns

Definition (Graded Bit-Error-Correcting Code)

A code C is a $[t_1, t_2, \ell_1, \ell_2]$ -bit-error-correcting code if it can correct any $[t_1, t_2, \ell_1, \ell_2]$ -bit-error-vector.

Goal is to construct a $[t_1, t_2; \ell_1, \ell_2]$ -bit-error-correcting code and apply to Flash to mitigate the observed intracell variability.

Tensor Product Codes [1]

Theorem

• Let H₁ be a parity check matrix for the $[m, k_1, 2\ell + 1]_2$ code \mathcal{C}^1 (standard $[n,k,d]$ notation).

[1] J.K. Wolf, "On codes derivable from the tensor product of check matrices," IEEE Trans. On Information Theory, vol. 8, pp. 163-169, April 1965.

Tensor Product Codes [1]

Theorem

- Let H₁ be a parity check matrix for the $[m, k_1, 2\ell + 1]_2$ code \mathcal{C}^1 (standard $[n,k,d]$ notation).
- Let H₂ be a parity check matrix for the $[n, k_2, 2t + 1]_{2^{m-k_1}}$ code C^2 defined over the alphabet of size $GF(2)^{m-k_1}$.

[1] J.K. Wolf, "On codes derivable from the tensor product of check matrices," IEEE Trans. On Information Theory, vol. 8, pp. 163-169, April 1965.

Tensor Product Codes [1]

Theorem

- Let H₁ be a parity check matrix for the $[m, k_1, 2\ell + 1]_2$ code \mathcal{C}^1 (standard $[n,k,d]$ notation).
- Let H₂ be a parity check matrix for the $[n, k_2, 2t + 1]_{2^{m-k_1}}$ code C^2 defined over the alphabet of size $GF(2)^{m-k_1}$.
- \bullet Then, $H_2 \otimes H_1$ is a parity check matrix for a $[t, \ell]$ -bit-error-correcting code.

[1] J.K. Wolf, "On codes derivable from the tensor product of check matrices," IEEE Trans. On Information Theory, vol. 8, pp. 163-169, April 1965.

Construction of a $[t_1, t_2; \ell_1, \ell_2]$ graded-bit-error-correcting code

• Suppose H_1 is an $r \times m$ parity check matrix of a $[m, k_1, \ell_2]_2$ code \mathcal{C}_1 where H_1 is $\left[\begin{array}{c} H_1' \ H_2' \end{array}\right]$ 1 $H_1^"$ $\Big]$ such that the following holds:

14 / 19

K ロ ▶ K @ ▶ K 할 > K 할 > → 할 → 9 Q Q

Construction of a $[t_1, t_2; \ell_1, \ell_2]$ graded-bit-error-correcting code

- Suppose H_1 is an $r \times m$ parity check matrix of a $[m, k_1, \ell_2]_2$ code \mathcal{C}_1 where H_1 is $\left[\begin{array}{c} H_1' \ H_2' \end{array}\right]$ 1 $H_1^"$ $\Big]$ such that the following holds:
	- \mathbf{D} $H_{1}^{'}$ is the parity check matrix of a $[m,m-r',\ell_1]_2$ code and

14 / 19

イロト 不優 ト 不差 ト 不差 トー 差し

Construction of a $[t_1, t_2; \ell_1, \ell_2]$ graded-bit-error-correcting code

- Suppose H_1 is an $r \times m$ parity check matrix of a $[m, k_1, \ell_2]_2$ code \mathcal{C}_1 where H_1 is $\left[\begin{array}{c} H_1' \ H_2' \end{array}\right]$ 1 $H_1^"$ $\Big]$ such that the following holds:
	- \mathbf{D} $H_{1}^{'}$ is the parity check matrix of a $[m,m-r',\ell_1]_2$ code and

14 / 19

K ロ ▶ K @ ▶ K 글 ▶ K 글 ▶ │ 글 │ ◆ Q Q <mark>Q</mark>

2 H_1^r is a r" by m matrix for $r'' = r - r'$.

Construction of a $[t_1, t_2; \ell_1, \ell_2]$ -graded-bit-error-correcting code

Suppose H_2 is the parity check matrix of a $[n, k_2, t_1 + t_2]_{2^{r'}}$ code.

15 / 19

 Ω

B

Construction of a $[t_1, t_2; \ell_1, \ell_2]$ -graded-bit-error-correcting code

- Suppose H_2 is the parity check matrix of a $[n, k_2, t_1 + t_2]_{2^{r'}}$ code.
- Suppose H_3 is the parity check matrix of a $[n, k_3, t_2]_{2^{r^{\nu}}}$ code.

15 / 19

 Ω

 $\mathbf{A} \otimes \mathbf{B} \rightarrow \mathbf{A} \otimes \mathbf{B} \rightarrow \mathbf{A} \otimes \mathbf{B} \rightarrow \mathbf{A} \otimes \mathbf{B} \rightarrow \mathbf{B} \otimes \mathbf{B}$

Construction of a $[t_1, t_2; \ell_1, \ell_2]$ -graded-bit-error-correcting code

- Suppose H_2 is the parity check matrix of a $[n, k_2, t_1 + t_2]_{2^{r'}}$ code.
- Suppose H_3 is the parity check matrix of a $[n, k_3, t_2]_{2^{r^{\nu}}}$ code.

Theorem (Construction 2)

Then H_B is the parity check matrix of a $[t_1, t_2, \ell_1, \ell_2]_{2^m}$ -graded bit error correcting code, where

$$
H_B=\left(\begin{array}{c}H_2\otimes H_1'\\H_3\otimes H_1'\end{array}\right)
$$

.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Discussion

Using sphere-packing bound argument, it follows that the excess redundancy of C_B is about $t_2 \log(n)$.

Discussion

- Using sphere-packing bound argument, it follows that the excess redundancy of \mathcal{C}_B is about t₂ log(n).
- Construction 1 is also a graded-bit-error correcting code. Construction 2 offers better redundancy than Construction 1. when $(\ell_2 - \ell_1)t_1/t_2 > \log(n)/\log(m)$.

16 / 19

K ロ ▶ K @ ▶ K 할 > K 할 > → 할 → 9 Q Q

Discussion

- Using sphere-packing bound argument, it follows that the excess redundancy of \mathcal{C}_B is about t₂ log(n).
- Construction 1 is also a graded-bit-error correcting code. Construction 2 offers better redundancy than Construction 1. when $(\ell_2 - \ell_1)t_1/t_2 > \log(n)/\log(m)$.
- Further simplifications are possible for special cases of the code parameters.

16 / 19

イロト 不優 ト 不思 ト 不思 トー 温

Evaluation

• For TLC Flash, we compared a $[3, 2; 1, 3]_8$ -graded-bit-error-correcting code C of length 256 with rate 0.904 against the following codes:

17 / 19

 QQ

画

メロメ メ部 メメ きょうくきょう

Evaluation

• For TLC Flash, we compared a $[3, 2; 1, 3]_8$ -graded-bit-error-correcting code C of length 256 with rate 0.904 against the following codes:

17 / 19

 QQ

画

メロメ メ部 メメ きょうくきょう

 \bullet A non-binary [128, 116, 3]₈ code with rate 0.906.

Evaluation

- For TLC Flash, we compared a $[3, 2; 1, 3]_8$ -graded-bit-error-correcting code C of length 256 with rate 0.904 against the following codes:
	- \bullet A non-binary [128, 116, 3]₈ code with rate 0.906.
	- \bullet A binary [255, 231, 3]₂ BCH code with rate 0.906, applied to MSB/CSB/LSB in parallel.

17 / 19

 QQ

B

メロメ メ都 メメ きょうくきょう

Evaluation

- For TLC Flash, we compared a $[3, 2; 1, 3]_8$ -graded-bit-error-correcting code C of length 256 with rate 0.904 against the following codes:
	- \bullet A non-binary [128, 116, 3]₈ code with rate 0.906.
	- \bullet A binary [255, 231, 3]₂ BCH code with rate 0.906, applied to MSB/CSB/LSB in parallel.
	- \bullet 'Scheme A' Comprised of a non-binary [256, 227, 5] $_4$ code \mathcal{C}^2 applied to the LSB and the CSB for each Flash memory cell. An independent binary $[256, 240, 5]_2$ code \mathcal{C}^3 was applied to the MSB for each Flash memory cell. The overall rate is 0.904.

Evaluation

- For TLC Flash, we compared a $[3, 2; 1, 3]_8$ -graded-bit-error-correcting code C of length 256 with rate 0.904 against the following codes:
	- \bullet A non-binary [128, 116, 3]₈ code with rate 0.906.
	- \bullet A binary [255, 231, 3]₂ BCH code with rate 0.906, applied to MSB/CSB/LSB in parallel.
	- \bullet 'Scheme A' Comprised of a non-binary [256, 227, 5] $_4$ code \mathcal{C}^2 applied to the LSB and the CSB for each Flash memory cell. An independent binary $[256, 240, 5]_2$ code \mathcal{C}^3 was applied to the MSB for each Flash memory cell. The overall rate is 0.904.
- Constituents of C are C^1 as $[3, 0, 3]_2$ (with C'_1 as repetition code), and C^2 and C^3 from Scheme A.

Results

Newer generations of Flash memory continue to demand more efficient error-correction schemes.

Conclusion

- Newer generations of Flash memory continue to demand more efficient error-correction schemes.
- Codes based upon Tensor Product Codes offer an efficient alternative to binary and non-binary linear codes.