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Background

Voltage Levels for TLC

High Voltage

011
010
@ Most Significant Bit MSB 000
@ Center Significant Bit CSB 001

o Least Significant Bit LSB —

110
111

Low Voltage
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Empirical Data

Data Collection

@ Below is an image of the custom board from UCSD used to
collect the data.
@ On the first of every 100 P/E cycles the following was
performed:
© Erase the block. (block= 220 cells)
@ Read back the errors.
© Write random data.
© Read back the errors.
@ On the other 99 cycles, the block was erased and all-zeros

were written.

@ (NI, e

g 2o
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Empirical Data

Raw Error Rate

Error Rates for TLC Flash
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Empirical Data

Error Patterns Within a Symbol

Number of bits in symbol that err Percentage of errors
1 0.9617
2 0.0314
3 0.0069
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Error Patterns Within a Symbol

Number of bits in symbol that err Percentage of errors
1 0.9617
2 0.0314
3 0.0069

Idea: Design a code for observed intracell variability.
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@ Codes are over alphabet of size g = 2™, where m is some
positive integer and each symbol represents a Flash cell.

@ A symbol is a binary length-m vector.

@ A codeword is n binary length-m vectors so the result is a
length-nm vector.

@ Example over alphabet of size 8:
(45702) — > (100 101 111 000 010)
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Error-Correction Model

Error Vectors (ctd.)

Definition (Graded Bit-Error Vector)

The length-nm vector e = (eg, €1,...,e,-1), where each m-bit
vector e; represents a symbol of size 2™, is a
[t1, 12; {1, £2]-bit-error-vector if

QO [{ie#0}[<t1+
Q Vi, Wt(e,') < 62.
Q [{i: wt(e;) > (1} <

Example of a [5,2; 1, 3]-bit-error-vector:
( 100 100 000 010 111 001 000 111 010 ).
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Error-Correction Model

Correcting Weighted Error Patterns
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Error-Correction Model

Correcting Weighted Error Patterns

Definition (Graded Bit-Error-Correcting Code)

A code C is a [t1, i; {1, £2]-bit-error-correcting code if it can
correct any [t1, i-; {1, {2]-bit-error-vector.

Goal is to construct a [t1, t2; {1, {>]-bit-error-correcting code and
apply to Flash to mitigate the observed intracell variability.
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Error-Correcting Codes

Tensor Product Codes [1]

@ Let Hy be a parity check matrix for the [m, ky,2¢ + 1], code
C! (standard [n, k, d] notation).

[1] J.K. Wolf, "On codes derivable from the tensor product of check matrices,” IEEE Trans. On Information

Theory, vol. 8, pp. 163-169, April 1965.
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@ Let Hy be a parity check matrix for the [m, ky,2¢ + 1], code
C! (standard [n, k, d] notation).

o Let H, be a parity check matrix for the [n, ko, 2t + 1]5m—k
code C? defined over the alphabet of size GF(2)™ %

@ Then, Hy ® Hy is a parity check matrix for a
[t, £]-bit-error-correcting code.

[1] J.K. Wolf, "On codes derivable from the tensor product of check matrices,” IEEE Trans. On Information

Theory, vol. 8, pp. 163-169, April 1965.
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!

code C; where Hy is [ Z?l, ] such that the following holds:
1

@ H; is the parity check matrix of a [m, m — r/, {1]» code and

Q Hj isar’ by mmatrixfor r' =r—r'.
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Error-Correcting Codes

Construction of a [, t; , {»]-graded-bit-error-correcting
code

@ Suppose H, is the parity check matrix of a [n, ko, t1 + 2],
code.

@ Suppose Hs is the parity check matrix of a [n, k3, ], code.

Theorem (Construction 2)

Then Hg is the parity check matrix of a [t1, t-; {1, {2]om-graded bit
error correcting code, where

H> ® H,
Hg = 1.
5 <H3®H1)
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@ Using sphere-packing bound argument, it follows that the
excess redundancy of Cg is about t; log(n).

@ Construction 1 is also a graded-bit-error correcting code.
Construction 2 offers better redundancy than Construction 1.
when (62 — gl)tl/tz > |og(n)/ Iog(m).

@ Further simplifications are possible for special cases of the
code parameters.
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[3,2; 1, 3]g-graded-bit-error-correcting code C of length 256
with rate 0.904 against the following codes:
@ A non-binary [128,116, 3]s code with rate 0.906.
@ A binary [255, 231, 3], BCH code with rate 0.906, applied to
MSB/CSB/LSB in parallel.
© 'Scheme A’ - Comprised of a non-binary [256, 227, 5], code C2
applied to the LSB and the CSB for each Flash memory cell.
An independent binary [256,240,5], code C* was applied to
the MSB for each Flash memory cell. The overall rate is 0.904.

o Constituents of C are C! as [3,0,3]> (with C} as repetition
code), and C? and C3 from Scheme A.
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Results

Bit Error Rate
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Conclusion

Conclusion

@ Newer generations of Flash memory continue to demand more
efficient error-correction schemes.

@ Codes based upon Tensor Product Codes offer an efficient
alternative to binary and non-binary linear codes.
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