Tackling Intracell Variability in TLC Flash Through Error Correction Coding

Ryan Gabrys, Lara Dolecek

Department of Electrical Engineering UCLA

イロト 不同下 イヨト イヨト

3

1/19

- 2 Empirical Data
- 3 Error-Correction Model
- 4 Error-Correcting Codes
- **5** Performance Results

6 Conclusion

Technical constraint

• Flash memory is comprised of a set of floating gate cells.

- Flash memory is comprised of a set of floating gate cells.
- Information is stored by controlling the number of electrons stored within each cell.

- Flash memory is comprised of a set of floating gate cells.
- Information is stored by controlling the number of electrons stored within each cell.
- Density Per Cell

- Flash memory is comprised of a set of floating gate cells.
- Information is stored by controlling the number of electrons stored within each cell.
- Density Per Cell
 - Single-Level-Cell (SLC) 1 bit per cell.

- Flash memory is comprised of a set of floating gate cells.
- Information is stored by controlling the number of electrons stored within each cell.
- Density Per Cell
 - Single-Level-Cell (SLC) 1 bit per cell.
 - Multiple-Level-Cell (MLC) 2 bits per cell.

- Flash memory is comprised of a set of floating gate cells.
- Information is stored by controlling the number of electrons stored within each cell.
- Density Per Cell
 - Single-Level-Cell (SLC) 1 bit per cell.
 - Multiple-Level-Cell (MLC) 2 bits per cell.
 - Triple-Level-Cell (TLC) 3 bits of information per cell.

- Flash memory is comprised of a set of floating gate cells.
- Information is stored by controlling the number of electrons stored within each cell.
- Density Per Cell
 - Single-Level-Cell (SLC) 1 bit per cell.
 - Multiple-Level-Cell (MLC) 2 bits per cell.
 - Triple-Level-Cell (TLC) 3 bits of information per cell.

Previous work

- Recent error-correcting codes for Flash memory
 - T. Kløve, B. Bose, N. Elarief, "Systematic Single Limited Magnitude Error Correcting Codes for Flash Memories," 2011.
 - Y. Cassuto et al., "Codes for Multi-Level Flash Memories: Correcting Asymmetric Limited-Magnitude Errors," 2010.
 - Y. Maeda and H. Kaneko, "Error Control Coding for Multilevel Cell Flash Memories Using Nonbinary Low-Density Parity-Check Codes," 2009.

Previous work

- Recent error-correcting codes for Flash memory
 - T. Kløve, B. Bose, N. Elarief, "Systematic Single Limited Magnitude Error Correcting Codes for Flash Memories," 2011.
 - Y. Cassuto et al., "Codes for Multi-Level Flash Memories: Correcting Asymmetric Limited-Magnitude Errors," 2010.
 - Y. Maeda and H. Kaneko, "Error Control Coding for Multilevel Cell Flash Memories Using Nonbinary Low-Density Parity-Check Codes," 2009.
- Tensor product codes
 - P. Chaichanavong and P.H. Siegel, "A Tensor-Product Parity Code for Magnetic Recording," 2006.
 - J.K. Wolf, "On Codes Derivable from the Tensor Product of Check Matrices," 1965.

Voltage Levels for TLC

- Center Significant Bit CSB
- Least Significant Bit LSB

High Voltage

Data Collection

• Below is an image of the custom board from UCSD used to collect the data.

Data Collection

- Below is an image of the custom board from UCSD used to collect the data.
- On the first of every 100 P/E cycles the following was performed:

Data Collection

- Below is an image of the custom board from UCSD used to collect the data.
- On the first of every 100 P/E cycles the following was performed:
 - Erase the block. (block= 2^{20} cells)

3

・ロン ・四 と ・ ヨ と ・ ヨ と

Data Collection

- Below is an image of the custom board from UCSD used to collect the data.
- On the first of every 100 P/E cycles the following was performed:
 - Erase the block. (block= 2^{20} cells)
 - 2 Read back the errors.

Data Collection

- Below is an image of the custom board from UCSD used to collect the data.
- On the first of every 100 P/E cycles the following was performed:
 - Erase the block. (block= 2^{20} cells)
 - 2 Read back the errors.
 - Write random data.

3

イロン イヨン イヨン イヨン

Data Collection

- Below is an image of the custom board from UCSD used to collect the data.
- $\bullet\,$ On the first of every 100 P/E cycles the following was performed:
 - Erase the block. (block= 2^{20} cells)
 - 2 Read back the errors.
 - Write random data.
 - ④ Read back the errors.

3

・ロン ・四 と ・ ヨン ・ ヨン

Data Collection

- Below is an image of the custom board from UCSD used to collect the data.
- On the first of every 100 P/E cycles the following was performed:
 - Erase the block. (block= 2²⁰ cells)
 - 2 Read back the errors.
 - Write random data.
 - ④ Read back the errors.
- On the other 99 cycles, the block was erased and all-zeros were written.

- 3

イロン イヨン イヨン イヨン

Raw Error Rate

Error Patterns Within a Symbol

Number of bits in symbol that err	Percentage of errors
1	0.9617
2	0.0314
3	0.0069

Error Patterns Within a Symbol

Number of bits in symbol that err	Percentage of errors
1	0.9617
2	0.0314
3	0.0069

Idea: Design a code for observed intracell variability.

Code Properties

• Codes are over alphabet of size $q = 2^m$, where *m* is some positive integer and each symbol represents a Flash cell.

Code Properties

- Codes are over alphabet of size $q = 2^m$, where *m* is some positive integer and each symbol represents a Flash cell.
- A symbol is a binary length-*m* vector.

Code Properties

- Codes are over alphabet of size $q = 2^m$, where *m* is some positive integer and each symbol represents a Flash cell.
- A symbol is a binary length-*m* vector.
- A codeword is *n* binary length-*m* vectors so the result is a length-*nm* vector.

Code Properties

- Codes are over alphabet of size $q = 2^m$, where *m* is some positive integer and each symbol represents a Flash cell.
- A symbol is a binary length-*m* vector.
- A codeword is *n* binary length-*m* vectors so the result is a length-*nm* vector.
- Example over alphabet of size 8: (45702) -> (100 101 111 000 010)

Error Vectors

Definition (Bit-Error Vector)

The length-*nm* vector $\mathbf{e} = (\mathbf{e}_0, \mathbf{e}_1, \dots, \mathbf{e}_{n-1})$, where each *m*-bit vector \mathbf{e}_i represents a symbol of size 2^m , is a $[t; \ell]$ -bit-error-vector if

Error Vectors

Definition (Bit-Error Vector)

The length-*nm* vector $\mathbf{e} = (\mathbf{e}_0, \mathbf{e}_1, \dots, \mathbf{e}_{n-1})$, where each *m*-bit vector \mathbf{e}_i represents a symbol of size 2^m , is a $[t; \ell]$ -bit-error-vector if

$$|\{i: \mathbf{e}_i \neq \mathbf{0}\}| \leq \mathbf{t}.$$

Error Vectors

Definition (Bit-Error Vector)

The length-*nm* vector $\mathbf{e} = (\mathbf{e}_0, \mathbf{e}_1, \dots, \mathbf{e}_{n-1})$, where each *m*-bit vector \mathbf{e}_i represents a symbol of size 2^m , is a $[t; \ell]$ -bit-error-vector if

$$|\{i : \mathbf{e}_i \neq \mathbf{0}\}| \le t$$

$$\forall i, wt(\mathbf{e}_i) \le \ell.$$

<ロ> < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (),

Error Vectors

Definition (Bit-Error Vector)

The length-*nm* vector $\mathbf{e} = (\mathbf{e}_0, \mathbf{e}_1, \dots, \mathbf{e}_{n-1})$, where each *m*-bit vector \mathbf{e}_i represents a symbol of size 2^m , is a $[t; \ell]$ -bit-error-vector if

$$\mathbf{0} |\{i: \mathbf{e}_i \neq \mathbf{0}\}| \leq \mathbf{t}$$

2
$$\forall i, wt(\mathbf{e}_i) \leq \boldsymbol{\ell}.$$

Definition (Bit-Error-Correcting Code)

A code C is a $[t; \ell]$ -bit-error-correcting code if it can correct any $[t; \ell]$ -bit-error-vector.

Error Vectors (ctd.)

Definition (Graded Bit-Error Vector)

The length-*nm* vector $\mathbf{e} = (\mathbf{e}_0, \mathbf{e}_1, \dots, \mathbf{e}_{n-1})$, where each *m*-bit vector \mathbf{e}_i represents a symbol of size 2^m , is a $[\mathbf{t}_1, \mathbf{t}_2; \ell_1, \ell_2]$ -bit-error-vector if

Error Vectors (ctd.)

Definition (Graded Bit-Error Vector)

The length-*nm* vector $\mathbf{e} = (\mathbf{e}_0, \mathbf{e}_1, \dots, \mathbf{e}_{n-1})$, where each *m*-bit vector \mathbf{e}_i represents a symbol of size 2^m , is a $[t_1, t_2; \ell_1, \ell_2]$ -bit-error-vector if $\mathbf{0} |\{i : \mathbf{e}_i \neq \mathbf{0}\}| \leq t_1 + t_2.$

Error Vectors (ctd.)

Definition (Graded Bit-Error Vector)

The length-*nm* vector $\mathbf{e} = (\mathbf{e}_0, \mathbf{e}_1, \dots, \mathbf{e}_{n-1})$, where each *m*-bit vector \mathbf{e}_i represents a symbol of size 2^m , is a $[t_1, t_2; \ell_1, \ell_2]$ -bit-error-vector if **1** $\{i : \mathbf{e}_i \neq \mathbf{0}\}| \leq t_1 + t_2$. **2** $\forall i, wt(\mathbf{e}_i) \leq \ell_2$.

Error Vectors (ctd.)

Definition (Graded Bit-Error Vector)

The length-*nm* vector $\mathbf{e} = (\mathbf{e}_0, \mathbf{e}_1, \dots, \mathbf{e}_{n-1})$, where each *m*-bit vector \mathbf{e}_i represents a symbol of size 2^m , is a $[t_1, t_2; \ell_1, \ell_2]$ -bit-error-vector if **1** $\{i : \mathbf{e}_i \neq \mathbf{0}\}| \leq t_1 + t_2$. **2** $\forall i, wt(\mathbf{e}_i) \leq \ell_2$. **3** $|\{i : wt(\mathbf{e}_i) > \ell_1\}| \leq t_2$.

Error Vectors (ctd.)

Definition (Graded Bit-Error Vector)

The length-*nm* vector $\mathbf{e} = (\mathbf{e}_0, \mathbf{e}_1, \dots, \mathbf{e}_{n-1})$, where each *m*-bit vector \mathbf{e}_i represents a symbol of size 2^m , is a $[t_1, t_2; \ell_1, \ell_2]$ -bit-error-vector if **1** $\{i : \mathbf{e}_i \neq \mathbf{0}\}| \leq t_1 + t_2$. **2** $\forall i, wt(\mathbf{e}_i) \leq \ell_2$. **3** $|\{i : wt(\mathbf{e}_i) > \ell_1\}| < t_2$.

Example of a [5, 2; 1, 3]-bit-error-vector: (100 100 000 010 111 001 000 111 010).

Correcting Weighted Error Patterns

Definition (Graded Bit-Error-Correcting Code)

A code C is a $[t_1, t_2; \ell_1, \ell_2]$ -bit-error-correcting code if it can correct any $[t_1, t_2; \ell_1, \ell_2]$ -bit-error-vector.

Correcting Weighted Error Patterns

Definition (Graded Bit-Error-Correcting Code)

A code C is a $[t_1, t_2; \ell_1, \ell_2]$ -bit-error-correcting code if it can correct any $[t_1, t_2; \ell_1, \ell_2]$ -bit-error-vector.

Goal is to construct a $[t_1, t_2; \ell_1, \ell_2]$ -bit-error-correcting code and apply to Flash to mitigate the observed intracell variability.

Tensor Product Codes [1]

Theorem

• Let H_1 be a parity check matrix for the $[m, k_1, 2\ell + 1]_2$ code C^1 (standard [n, k, d] notation).

J.K. Wolf, "On codes derivable from the tensor product of check matrices," *IEEE Trans. On Information Theory*, vol. 8, pp. 163-169, April 1965.

Tensor Product Codes [1]

Theorem

- Let H_1 be a parity check matrix for the $[m, k_1, 2\ell + 1]_2$ code C^1 (standard [n, k, d] notation).
- Let H₂ be a parity check matrix for the [n, k₂, 2t + 1]<sub>2^{m-k₁}
 code C² defined over the alphabet of size GF(2)^{m-k₁}.
 </sub>

J.K. Wolf, "On codes derivable from the tensor product of check matrices," *IEEE Trans. On Information Theory*, vol. 8, pp. 163-169, April 1965.

Tensor Product Codes [1]

Theorem

- Let H_1 be a parity check matrix for the $[m, k_1, 2\ell + 1]_2$ code C^1 (standard [n, k, d] notation).
- Let H₂ be a parity check matrix for the [n, k₂, 2t + 1]<sub>2^{m-k₁}
 code C² defined over the alphabet of size GF(2)^{m-k₁}.
 </sub>
- Then, H₂ ⊗ H₁ is a parity check matrix for a [t, ℓ]-bit-error-correcting code.

J.K. Wolf, "On codes derivable from the tensor product of check matrices," *IEEE Trans. On Information Theory*, vol. 8, pp. 163-169, April 1965.

Construction of a $[t_1, t_2; \ell_1, \ell_2]$ graded-bit-error-correcting code

• Suppose H_1 is an $r \times m$ parity check matrix of a $[m, k_1, \ell_2]_2$ code C_1 where H_1 is $\begin{bmatrix} H'_1 \\ H''_1 \end{bmatrix}$ such that the following holds:

・ロン ・四 と ・ ヨ と ・ ヨ と … ヨ

14/19

Construction of a $[t_1, t_2; \ell_1, \ell_2]$ graded-bit-error-correcting code

• Suppose H_1 is an $r \times m$ parity check matrix of a $[m, k_1, \ell_2]_2$ code C_1 where H_1 is $\begin{bmatrix} H'_1 \\ H''_1 \end{bmatrix}$ such that the following holds:

() H'_1 is the parity check matrix of a $[m, m - r', \ell_1]_2$ code and

Construction of a $[t_1, t_2; \ell_1, \ell_2]$ graded-bit-error-correcting code

- Suppose H_1 is an $r \times m$ parity check matrix of a $[m, k_1, \ell_2]_2$ code C_1 where H_1 is $\begin{bmatrix} H'_1 \\ H'_1 \end{bmatrix}$ such that the following holds:
 - **(**) H'_1 is the parity check matrix of a $[m, m r', \ell_1]_2$ code and

・ロト ・ ア・ ・ ヨト ・ ヨー・ うらの

14/19

2 $H_1^{"}$ is a r" by m matrix for $r^{"} = r - r'$.

Construction of a $[t_1, t_2; \ell_1, \ell_2]$ -graded-bit-error-correcting code

Suppose H₂ is the parity check matrix of a [n, k₂, t₁ + t₂]_{2r'} code.

3

15/19

Construction of a $[t_1, t_2; \ell_1, \ell_2]$ -graded-bit-error-correcting code

- Suppose H₂ is the parity check matrix of a [n, k₂, t₁ + t₂]_{2r'} code.
- Suppose H_3 is the parity check matrix of a $[n, k_3, t_2]_{2^{r''}}$ code.

Construction of a $[t_1, t_2; \ell_1, \ell_2]$ -graded-bit-error-correcting code

- Suppose H₂ is the parity check matrix of a [n, k₂, t₁ + t₂]_{2r'} code.
- Suppose H_3 is the parity check matrix of a $[n, k_3, t_2]_{2^{r''}}$ code.

Theorem (Construction 2)

Then H_B is the parity check matrix of a $[t_1, t_2; \ell_1, \ell_2]_{2^m}$ -graded bit error correcting code, where

$$H_B = \left(\begin{array}{c} H_2 \otimes H_1' \\ H_3 \otimes H_1'' \end{array}\right)$$

(a)

Discussion

• Using sphere-packing bound argument, it follows that the excess redundancy of C_B is about $t_2 \log(n)$.

Discussion

- Using sphere-packing bound argument, it follows that the excess redundancy of C_B is about $t_2 \log(n)$.
- Construction 1 is also a graded-bit-error correcting code.
 Construction 2 offers better redundancy than Construction 1.
 when (ℓ₂ − ℓ₁)t₁/t₂ > log(n)/log(m).

Discussion

- Using sphere-packing bound argument, it follows that the excess redundancy of C_B is about $t_2 \log(n)$.
- Construction 1 is also a graded-bit-error correcting code. Construction 2 offers better redundancy than Construction 1. when (ℓ₂ − ℓ₁)t₁/t₂ > log(n)/log(m).
- Further simplifications are possible for special cases of the code parameters.

Evaluation

• For TLC Flash, we compared a [3, 2; 1, 3]₈-graded-bit-error-correcting code C of length 256 with rate 0.904 against the following codes:

- For TLC Flash, we compared a
 [3, 2; 1, 3]₈-graded-bit-error-correcting code C of length 256
 with rate 0.904 against the following codes:
 - A non-binary [128, 116, 3]₈ code with rate 0.906.

- For TLC Flash, we compared a
 [3, 2; 1, 3]₈-graded-bit-error-correcting code C of length 256
 with rate 0.904 against the following codes:
 - A non-binary [128, 116, 3]₈ code with rate 0.906.
 - A binary [255, 231, 3]₂ BCH code with rate 0.906, applied to MSB/CSB/LSB in parallel.

- For TLC Flash, we compared a [3, 2; 1, 3]₈-graded-bit-error-correcting code C of length 256 with rate 0.904 against the following codes:
 - A non-binary [128, 116, 3]₈ code with rate 0.906.
 - A binary [255, 231, 3]₂ BCH code with rate 0.906, applied to MSB/CSB/LSB in parallel.
 - 'Scheme A' Comprised of a non-binary [256, 227, 5]₄ code C² applied to the LSB and the CSB for each Flash memory cell. An independent binary [256, 240, 5]₂ code C³ was applied to the MSB for each Flash memory cell. The overall rate is 0.904.

- For TLC Flash, we compared a [3, 2; 1, 3]₈-graded-bit-error-correcting code C of length 256 with rate 0.904 against the following codes:
 - A non-binary [128, 116, 3]₈ code with rate 0.906.
 - A binary [255, 231, 3]₂ BCH code with rate 0.906, applied to MSB/CSB/LSB in parallel.
 - 'Scheme A' Comprised of a non-binary [256, 227, 5]₄ code C² applied to the LSB and the CSB for each Flash memory cell. An independent binary [256, 240, 5]₂ code C³ was applied to the MSB for each Flash memory cell. The overall rate is 0.904.
- Constituents of C are C¹ as [3,0,3]₂ (with C'₁ as repetition code), and C² and C³ from Scheme A.

Results

• Newer generations of Flash memory continue to demand more efficient error-correction schemes.

- Newer generations of Flash memory continue to demand more efficient error-correction schemes.
- Codes based upon Tensor Product Codes offer an efficient alternative to binary and non-binary linear codes.