
Outline
Background

Empirical Data
Error-Correction Model
Error-Correcting Codes

Performance Results
Conclusion

Tackling Intracell Variability in TLC Flash Through
Error Correction Coding

Ryan Gabrys,Lara Dolecek

Department of Electrical Engineering UCLA

1 / 19



Outline
Background

Empirical Data
Error-Correction Model
Error-Correcting Codes

Performance Results
Conclusion

1 Background

2 Empirical Data

3 Error-Correction Model

4 Error-Correcting Codes

5 Performance Results

6 Conclusion

2 / 19



Outline
Background

Empirical Data
Error-Correction Model
Error-Correcting Codes

Performance Results
Conclusion

Technical constraint

Flash memory is comprised of a set of floating gate cells.

Information is stored by controlling the number of electrons
stored within each cell.

Density Per Cell

Single-Level-Cell (SLC) 1 bit per cell.
Multiple-Level-Cell (MLC) 2 bits per cell.
Triple-Level-Cell (TLC) 3 bits of information per cell.
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Previous work

Recent error-correcting codes for Flash memory

T. Kløve, B. Bose, N. Elarief, “Systematic Single Limited
Magnitude Error Correcting Codes for Flash Memories,” 2011.
Y. Cassuto et al., “Codes for Multi-Level Flash Memories:
Correcting Asymmetric Limited-Magnitude Errors,” 2010.
Y. Maeda and H. Kaneko, “Error Control Coding for Multilevel
Cell Flash Memories Using Nonbinary Low-Density
Parity-Check Codes,” 2009.

Tensor product codes

P. Chaichanavong and P.H. Siegel, “A Tensor-Product Parity
Code for Magnetic Recording,” 2006.
J.K. Wolf, “On Codes Derivable from the Tensor Product of
Check Matrices,” 1965.
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Voltage Levels for TLC
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Data Collection

Below is an image of the custom board from UCSD used to
collect the data.

On the first of every 100 P/E cycles the following was
performed:

1 Erase the block. (block= 220 cells)
2 Read back the errors.
3 Write random data.
4 Read back the errors.

On the other 99 cycles, the block was erased and all-zeros
were written.
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Error Patterns Within a Symbol

Number of bits in symbol that err Percentage of errors

1 0.9617
2 0.0314
3 0.0069

Idea: Design a code for observed intracell variability.
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Code Properties

Codes are over alphabet of size q = 2m, where m is some
positive integer and each symbol represents a Flash cell.

A symbol is a binary length-m vector.

A codeword is n binary length-m vectors so the result is a
length-nm vector.

Example over alphabet of size 8:
(45702)− > (100 101 111 000 010)
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Error Vectors

Definition (Bit-Error Vector)

The length-nm vector e = (e0, e1, . . . , en−1), where each m-bit
vector ei represents a symbol of size 2m, is a [t; `]-bit-error-vector
if

1 |{i : ei 6= 0}| ≤ t.

2 ∀i , wt(ei ) ≤ `.

Definition (Bit-Error-Correcting Code)

A code C is a [t; `]-bit-error-correcting code if it can correct any
[t; `]-bit-error-vector.
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Error Vectors (ctd.)

Definition (Graded Bit-Error Vector)

The length-nm vector e = (e0, e1, . . . , en−1), where each m-bit
vector ei represents a symbol of size 2m, is a
[t1, t2; `1, `2]-bit-error-vector if

1 |{i : ei 6= 0}| ≤ t1 + t2.

2 ∀i , wt(ei ) ≤ `2.

3 |{i : wt(ei ) > `1}| ≤ t2.

Example of a [5, 2; 1, 3]-bit-error-vector:
( 100 100 000 010 111 001 000 111 010 ).
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Correcting Weighted Error Patterns

Definition (Graded Bit-Error-Correcting Code)

A code C is a [t1, t2; `1, `2]-bit-error-correcting code if it can
correct any [t1, t2; `1, `2]-bit-error-vector.

Goal is to construct a [t1, t2; `1, `2]-bit-error-correcting code and
apply to Flash to mitigate the observed intracell variability.
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Tensor Product Codes [1]

Theorem

Let H1 be a parity check matrix for the [m, k1, 2` + 1]2 code
C1 (standard [n, k , d ] notation).

Let H2 be a parity check matrix for the [n, k2, 2t + 1]2m−k1

code C2 defined over the alphabet of size GF (2)m−k1 .

Then, H2 ⊗ H1 is a parity check matrix for a
[t, `]-bit-error-correcting code.

[1] J.K. Wolf, ”On codes derivable from the tensor product of check matrices,” IEEE Trans. On Information

Theory, vol. 8, pp. 163-169, April 1965.
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Construction of a [t1, t2; `1, `2] graded-bit-error-correcting
code

Suppose H1 is an r ×m parity check matrix of a [m, k1, `2]2

code C1 where H1 is

[
H
′
1

H”
1

]
such that the following holds:

1 H
′

1 is the parity check matrix of a [m,m − r ′, `1]2 code and

2 H”
1 is a r” by m matrix for r” = r − r ′.
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Construction of a [t1, t2; `1, `2]-graded-bit-error-correcting
code

Suppose H2 is the parity check matrix of a [n, k2, t1 + t2]2r′

code.

Suppose H3 is the parity check matrix of a [n, k3, t2]2r” code.

Theorem (Construction 2)

Then HB is the parity check matrix of a [t1, t2; `1, `2]2m -graded bit
error correcting code, where

HB =

(
H2 ⊗ H

′
1

H3 ⊗ H”
1

)
.
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Discussion

Using sphere-packing bound argument, it follows that the
excess redundancy of CB is about t2 log(n).

Construction 1 is also a graded-bit-error correcting code.
Construction 2 offers better redundancy than Construction 1.
when (`2 − `1)t1/t2 > log(n)/ log(m).

Further simplifications are possible for special cases of the
code parameters.
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Evaluation

For TLC Flash, we compared a
[3, 2; 1, 3]8-graded-bit-error-correcting code C of length 256
with rate 0.904 against the following codes:

1 A non-binary [128, 116, 3]8 code with rate 0.906.
2 A binary [255, 231, 3]2 BCH code with rate 0.906, applied to

MSB/CSB/LSB in parallel.
3 ’Scheme A’ - Comprised of a non-binary [256, 227, 5]4 code C2

applied to the LSB and the CSB for each Flash memory cell.
An independent binary [256, 240, 5]2 code C3 was applied to
the MSB for each Flash memory cell. The overall rate is 0.904.

Constituents of C are C1 as [3, 0, 3]2 (with C′1 as repetition
code), and C2 and C3 from Scheme A.
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