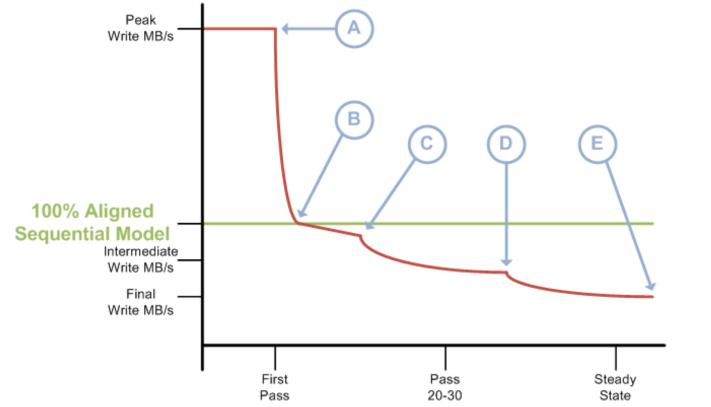


Abstracting the Flash Translation Layer for Enterprise-ready MLC

Erik de la Iglesia GridIron Systems

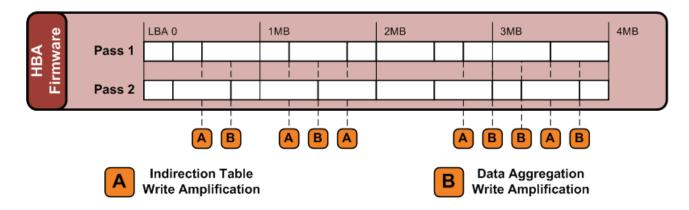

Issues with SSDs in Arrays

- SSDs are not drop-in replacements for HDDs
- System optimizations for single SSD may not be portable to arrays
- Many complex issues (for 5 minutes)
 - Aligned Sequential Writing Trap
 - Wear Leveling Self-Destruct

Consider FTL as a System / Device Abstraction

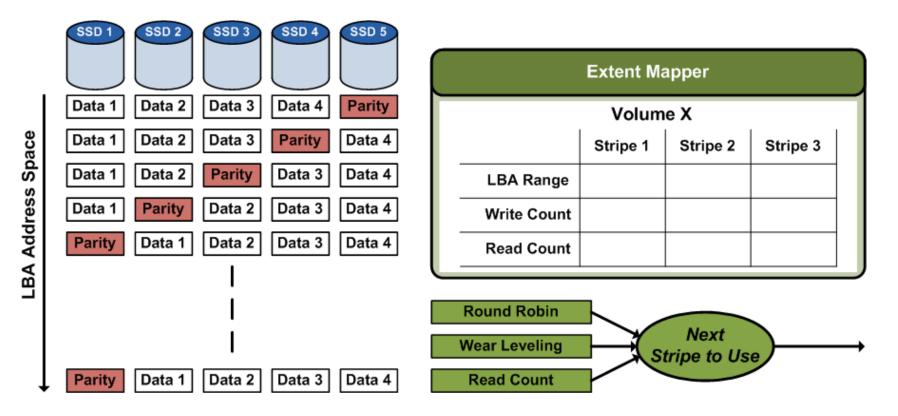
Write Performance over the life of an SSD Device

Theory: Minimize write amplification and controller overhead by using aligned, sequential, fixed-blocksize writing



256KB Aligned Sequential Writes

Two passes over same LBA space



lel		LBA 0				1MB				2MB				3MB				4MB
Kerr	Pass 1																	
SO	Pass 2																	

Traditional Storage Array Volumes as Extents over Stripes

Theory: Global wear-leveling extends array life

Flash - Optimized Storage Array Memory Plan for wear and performance

	SSD 1 SSD 2 SSD 3 SSD 4 SSD 5	Extent Mapper									
LBA Address Space	Data 1 Data 2 Data 3 Data 4 Parity Data 1 Data 2 Data 3 Data 4 Parity Data 1 Data 2 Data 3 Data 4 Parity I I I I I Data 1 Data 2 Data 3 Data 4 Parity I I I I I I I <td< td=""><td>Volume X Stripe 1 Stripe 2 Stripe 3 LBA Range Write Range Write Range Write Range Write Range</td><td></td></td<>	Volume X Stripe 1 Stripe 2 Stripe 3 LBA Range Write Range Write Range Write Range Write Range									
	Data 1Data 2Data 3ParityData 4Data 1Data 2Data 3ParityData 4IIIIParityData 1Data 2Data 3Data 4ParityData 1Data 2Data 3Data 4	Rotation Countdown Next Stripe Activity Next Performance Model Stripe and Range to Use Wear Plan Use Read Count Use									

Fla

Final Thoughts / Questions?

- Creating all-flash arrays is easy
- Maintaining performance and reliability over time requires new system architecture
- For performance and reliability, split FTL functions between array controllers and SSD devices
 - Block management and write buffering in SSDs
 - Global wear profiling in array controller
 - Lock down Kernel and HBA behavior