

Lattice ECC for NAND Flash Memory

Tom Parnell, CTO Siglead Europe

Flash Memory Summit 2012 Santa Clara, CA

- The challenges facing ECC for NAND are well understood
- As information density increases (e.g. sub 20-nm process), cells become less reliable and stronger ECC is needed to achieve performance
- We believe it is necessary to design ECC specifically to suit NAND flash memory rather than lifting directly from other storage tech. (e.g. HDD)
- Here we present a new ECC architecture based on a lattice structure that is optimized for NAND flash memory

Flash Memory Lattice ECC – Technical Spec.

ECC Type:	BCH	LDPC	LATTICE
Decoder Type	Hard	Soft	Hard or Soft
RAW BER ¹	3x10 ⁻³	?	2x10 ⁻²
uPER Eval.	Easy	Hard	Easy
Complexity ²	O(N log(N))	O(N)	O(N)
Error Floor	No	Yes	Hard Mode: No Soft Mode: lower than LDPC

¹ - RAW BER required		² – Complexity in terms of
to achieve operational		code block length (there are
PER=10 ⁻¹⁵ over		of course other
Gaussian MLC		considerations for
channel with overall		implementation e.g. number
coding rate=0.85		of BP iterations)

- MLC 25nm NAND
- 6000 random program/erase cycles (applied according to JEDEC standard)
- 10 years data retention time
- Close to 1 billion pages captured using SigNas II software + FPGA

Experiment matches theory closely down to very low uPER!

$$LR_L = log \left(\frac{0.5 \Pr(V|X=01) + 0.5\Pr(V|X=11)}{0.5 \Pr(V|X=00) + 0.5\Pr(V|X=10)} \right)$$

Flash Memory Summit 2012 Santa Clara, CA

Flash Memory Demonstration – Hard Mode

BCH

<u>SIGLEAD</u>TM

Demonstration – Lifetime Gain

- MLC 25nm NAND
- 3000 random program/erase cycles
- Baked at 145°C at uniform intervals
- Arrhenius law (E_A=1.1eV) is used to calculate equivalent time at 55°C
- Code block length N=8192+224(ecc)
- Both schemes have coding rate R=0.97

Lattice ECC lasts for 5x as long before uPER crosses 10⁻¹⁵ threshold

Memory Demonstration – PE Cycle Gain

- MLC 25nm NAND
- Bake equivalent to 1.1 years at 55°C
- Code block length N=8192+238(ecc)
- Both schemes have coding rate R=0.97

Lattice ECC can withstand **2x as many** PE cycles before uPER crosses 10⁻¹⁵ threshold

- A new ECC architecture based on *lattice structure* optimized for NAND flash memory
- Decoder has both algebraic structure and probabilistic elements
- No significant increase in complexity or R/W throughput
- Simple method for evaluating operational uPER
- Hard Mode:
 - 2x gain in RAW BER
 - 2x as many P/E cycles
 - 5x improvement in lifetime
- Soft Mode:
 - 7x gain in RAW BER
- Technical details of algorithm will be revealed once patent process is completed (or under NDA)