

The Applications of Spintronic Memory in Microprocessors

Yiran Chen (yic52@pitt.edu)

Swanson School of Engineering Department of Electrical and Computer Engineering

Outline

- Introduction
- STT-RAM as On-Chip Cache
 - On-Chip Cache for Multicore Architecture
 - Retention Time Relaxation
 - Multi-Level Cell Cache
- Conclusion

Outline

- Introduction
- STT-RAM as On-Chip Cache
 - On-Chip Cache for Multicore Architecture
 - Retention Time Relaxation
 - Multi-Level Cell Cache
- Conclusion

Department of Electrical & Computer Engineering

ITRS Projection

	SRAM	DRAM	NOR	NAND	MRAM	PRAM		
Data Retention	Ν	Ν	Y	Y	Y	Ð		T R Y
Memory Cell Factor (F²)	50-120	6-10	10	2-5	16-40	rag Fag	lůti	00 × 00
Read Time (ns)	1	30	10	50	3-20	2010	200	Lia la
Write /Erase Time (ns)	1	50	105-10 ⁷	10 ⁶ -10 ⁵	3-20	50-120	P	pu pu
Endurance	10 ¹⁶	10 ¹⁶	10 ⁵	10 ⁵	10 ¹⁵		de	Base
Power Consumption – Read/Write	Low	Low	High	High	Med/ High	aSS	ed	siv Co
Power Consumption – Other than R/W	Leakage Current	Refresh Power	None	None	None	M	dim	Las
Embedded/SoC Friendly	Y	N (Thermal)	N (Thermal)	N (Thermal)	Y	n: (Ei-colar)		$\mathbf{N}^{\scriptscriptstyle{\wedge}}$

8/10/2012

Magnetic RAM (MRAM)

Traditional MRAM vs. STT-RAM

Traditional MRAM

- Current induced magnetic field
- 7-8 year ago
- When scaling down, write current ↑

Spin-Transfer Torque

Writing "0"

Writing "1"

- Spin-Transfer Torque
- Recently
- When scaling down, write current \downarrow

Memory Hierarchy Review

On-chip memory (SRAM) 1~30 cycles Off-chip memory (DRAM) 100~300 cycles Solid State Disk

Solid State Disk (Flash) 25K~2M cycles

Secondary Storage (HDD) > 5M cycles

Courtesy: Al Fazio (10/2012)

Outline

- Introduction
- STT-RAM as On-Chip Cache
 - On-Chip Cache for Multicore Architecture
 - Retention Time Relaxation
 - Multi-Level Cell Cache
- Conclusion

SRAM? STT-RAM?

- SRAM is widely used as cache
- SRAM challenges when scaling down
 - Leakage, reliability, device mismatch, variation...
- Replace SRAM w/ STT-RAM?
- STT-RAM has the similar electrical interface as SRAM

STT-RAM

SRAM vs. MRAM (STT-RAM)

Area (65nm)	3.66mm ² SRAM	3.30mm ² MRAM
Capacity/Bank	128KB	512KB
Read latency	2.25ns	2.32ns
Write latency	2.26ns	I I.02ns
Read energy	0.90nJ	0.86nJ
Write energy	0.80nJ	5.00nJ

Cache configurations	Leakage power
2MB (16x128KB) SRAM cache	2.09₩
8MB (16x512KB) MRAM cache	0.26W

- **Pros:** Low leakage power, high density.
- **Cons*:** Long write latency and large write power

8/10/2012

Baseline 3D Architecture

- Core Layer + Cache Layers.
- NUCA caches with NOC connections.

Department of Electrical & Computer Engineering

SRAM-MRAM Hybrid L2 Cache

MRAM Bank **TSV** Core Core Core Core

IPC (Instruction Per Cycle) Result

■ 2M-SRAM-DNUCA ■ 8M-MRAM-DNUCA ■ 8M Hybrid DNUCA

The average IPC (Instruction Per Cycle) is increased by 15%.

The average total power is also reduced substantially.

Data retention time requirement

- No data will be kept in the memory hierarchy forever.
- Data becomes quiet even before it retires or is replaced.
- The actual retention time may be much shorter.

Department of Electrical & Computer Engineering

- MTJ data retention time is scaled from 4.27 years ("Base") to 26.5us ("Opt2").
- The required MTJ switching current decreases from 185.14uA ("Base") to 62.5uA ("Opt2") for a 10ns switching time at 350K.
- At a MTJ switching current of 150uA, the corresponding switching times of all three MTJ designs varied from 20ns to 2.5ns.

STT L1 w/ Data Monitor & Refreshing

STT L2 w/ Multi-Retentions

Dramatic Power and Energy Improvement

Multi-Level Cell (MLC) MTJ

- Two magnetic domains/devices

 Hard & soft
- Four resistance states: 00-11
- Transitions are realized by passing the spin-polarized currents with different amplitudes and/or directions.
 - Soft: by a small current.
 - Hard: by only a large current.

Department of Electrical & Computer Engineering

MLC MTJ R-V Sweep Curve

• X. Lou, et al, "Demonstration of Multilevel Cell Spin Transfer Switching in MgO Magnetic Tunnel Junctions," APL. 93, 242502 (2008)

MLC STT-RAM Cell Specifications

Switching Currents of MLC MTJ (µA) at 45nm

	R00	R01	R10	R11
R00	0	-38.3	Х	-56.7
R01	26.3	0	Х	-56.7
R10	66.4	Х	0	-9.1
R11	66.4	Х	39.7	0

Normal	Min. NMOS width (nm)	174.4	715.0
$V_{DD} = 1.0V, V_{WL} = 1.0V$	Memory cell area (F ²)	14.6	50.7
Overdriving	Min. NMOS width (nm)	88.1	148.6
$V_{DD} = 1.0V, V_{WL} = 1.2V$	Memory cell area (F ²)	9.0	12.9

Resistance-Logic State Encoding

Outline

- Introduction
- STT-RAM as On-Chip Cache
 - On-Chip Cache for Multicore Architecture
 - Retention Time Relaxation
 - Multi-Level Cell Cache
- Conclusion

Conclusion

- STT-RAM demonstrates great potentials in modern microprocessors, in terms of power, performance, and area.
- Novel architecture designs have been deployed to accommodate the unique properties of STT-RAM.
- STT-RAM technology also needs to be further polished for on-chip applications.

Department of Electrical & Computer Engineering

THANK YOU! Q&A

8/10/2012