

Progress Toward Understanding the Resistive Switching Process in RRAM Devices

Blanka Magyari-Köpe and Yoshio Nishi

Students: Liang Zhao Dan Duncan Seong-Geon Park (Samsung) Hyung-Dong Lee (Hynix)

RRAM as Emerging Memory

H. Akinaga, AIST, Maturity Evaluation for Selected Emerging Research Memory Technologies, 2010.

Metal Oxide M-I-M Memory (RRAM)

Motivation:

- Low programming voltage (< 3V)
- Material set compatible with conventional semiconductor processing (e.g Ni, Hf, Al...)
- Low temperature processing (BEOL-compatible)
- High speed and density
- Structural simplicity

Key issues:

- Physics of resistive switching
- Device scaling properties
- Device uniformity

RRAM Materials Choices

The Periodic Table of the Elements

I H Hydrogen 1.00794		corresponding binary oxide that												Helium 4.003			
3	4													10			
Li	Be														Ne		
Lithium 6 0/1	Beryllium 0.012182		Boron Carbon Nitrogen Oxygen Fluorine Net 10.811 12.0107 14.00674 15.9994 18.9984032 20.1												Neon 20,1707		
11	12	metal that is used for electrode													18		
No	Ma														A m		
Sodium	Magnesium		AL SI F S CI Mummum Silicon Phosphorus Sulfur Chlorine											Argon			
22.989770	24.3050	26.981538 28.0855 30.97370										30.973761	32.066	35.4527	39.948		
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Potassium	Calcium 40.078	Scandium	Titanium	Vanadium 50 9415	Chromium 51 0061	Manganese 54.038040	fron 55.845	Cobalt 58 933200	Nickei	Copper 63-546	Zine 65.30	Gallium	Germanium 72.61	Arsenic 74 92160	Selenium 78.06	Bromine 70 004	Krypton 83 80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Ph	Sr	v	Zr	Nb	Mo	Te	Ru	Rh	Pd	Ag	Cd	In	Sn	Sh	Te	I	Ňe
Rubidium	Strontium	Yttrium	Zireonium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	Iodine	Xenon
85.4678	87.62	88,90585	91.224	92.90638	95.94	(98)	101.07	102.90550	106.42	107.8682	112.411	114.818	118,710	121.760	127.60	126.90447	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Cesium 132 90545	Barium 137 327	Lanthanum 138 9055	Hafnium 178-40	Tantalum	Tungsten 183-84	Rhenium 186 207	Osmium 190.23	Iridium 192 217	Platinum 195.078	Gold 196.96655	Mercury 200 59	Thallium 204 3833	Lead 207.2	Bismuth 208 98038	Polonium (209)	Astatine (210)	Radon (222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114	200.70050	(207)	(210)	(222)
Er.	Do	Ň	Df	Dh	Sa	Dh	II.	Mt	110		112		114				
Francium	Radium	Actinium	Rutherfordium	Dubnium	Seaborgium	Bohrium	Hassium	Meitnerium									
(223)	(226)	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)	(277)						

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
140.116	140.90765	144.24	(145)	150.36	151.964	157.25	158.92534	162.50	164.93032	167.26	168.93421	173.04	174.967
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
232.0381	231.03588	238.0289	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

Unipolar and/or Bipolar Switching

Transition metal oxides Perovskites Nb₂O₅ SrTiO₃ Ta₂O₅ TiO₂ **CuMnOx** MgO Cr-SrZrO₃ NiO **CuxO ZnO** Fe₂O ZrO₂ CuMoOx PrCaMnO₃ CoO HfO₂ InZnOSr LaTiO₃ Al₂O₃ LaSrFeO₃ LaSrCoO₃

 $(\mathbf{y}) = (\mathbf{y})^{-2}$

K. Tsunoda et al, Applied Physics Letters 90, 2007. Strukov et al., Nature 453, 80, 2008. Yang et al., Nature Nanotechnology 3, 429, 2008.

Models for Resistive Switching

S. Yu, B. Lee, H.-S. P. Wong, "Metal Oxide Memory," in J. Wu, W. Han, H.-C. Kim, A. Janotti eds, "Functional Metal Oxide Nanostructures," Springer 2011.

Evidence of Oxygen Vacancy Filaments in Transition Metal Oxides

D.-H. Kwon et al., Nat. Nanotech., 5, 148-153, 2010

What is the role of oxygen vacancies on the on-state conduction and resistance switching mechanism?

Nano-Filament Formation in Pt/TiO₂/Pt

X-ray absorption spectromicroscopy and TEM J.P. Strachan et al., Adv. Mat. 22, 2010.

HRTEM and electron diffraction analysis

D.-H. Kwon et al., Nat. Nanotech., 5, 148-153, 2010.

A different phase with conical shape was observed after SET process.
 5~10nm diameter Magnéli phase (Ti_nO_{2n-1}) is confirmed by electron diffraction measurements .

Ab initio Modeling of Switching Mechanisms

- Metallic/semiconducting filament?
- Vacancy chain/filament formation energy of conductive paths?
- Local density of states arising from vacancy distribution metallic behavior?
- Transport, electronic or ionic?
- Macroscopic model vs atomic scale model?

TiO₂: Single Vacancy Bulk Defects States

Defect states are observed around ~ 0.4 eV below CBM.
Electrons are localized on Ti 3d orbitals and the oxygen vacancy sites.

S.G. Park, B. Magyari-Köpe, Y. Nishi, MRS. Symp. Proc. Vol. 1160, 2009. S.G. Park, B. Magyari-Köpe, Y. Nishi, Proc. Nonvol. Mem. Work., Nov 2008. S.G. Park, B. Magyari-Köpe, Y. Nishi, Phys. Rev B 82, 115109, 2010.

Memorv

TiO₂: Multi Vacancy Filament Formation

S.G. Park, B. Magyari-Köpe, Y. Nishi, Electron Dev. Lett. 32, 197, 2011.

TiO₂: Electron Delocalization Trends ← <110> <001> ↑

• Electron delocalization trends (electrons moving away from the oxygen vacancy sites) are observed when the number of oxygen vacancy neighbors are increased.

S.G. Park, B. Magyari-Köpe, Y. Nishi, Electron Dev. Lett. 32, 197, 2011.

Flash Memory SUMMIT <001>_zigzag <001> <110> 4V Type I Ti [vpe] vpe I Ti Type II Ti Type II Ti Type II T Туре І MM DOS(arh units) DOS(arb units) DOS(arb units) WWW WW -1 -1 -2 -3 -2 -3 _7 Type II 2 ſΛ Mm. DOS(arh units) DOS(arb units) DOS(arb. units) r۸۸ -1 -2 -3 -2 -3 -4 -4 -5 -5--5 -8 -2 2 -8 -2 2 4 -6 -4 0 4 6 -6 _1 -2 2 4 6 -8 -6 -4 0 6 Energy (eV) Energy (eV) Energy (eV)

TiO₂: Vacancy Filament Formation

 E_F -2.5eV ~ E_F

 Electrons tend to localize around the oxygen vacancies in randomly distributed V_o configurations.

S.G. Park, B. Magyari-Köpe, Y. Nishi, Electron Dev. Lett. 32, 197, 2011.
B. Magyari-Köpe, M. Tendulkar, S.G. Park, H.D. Lee, Y. Nishi, Nanotechn. 22, 254029, 2011.
B. Magyari-Köpe, S. G. Park, H.D. Lee, Y. Nishi, J. Mater. Sci., 2012.

S.G. Park, B. Magyari-Köpe, Y. Nishi, Tech. Digest VLSI Symp., 2011.

S.G. Park, B. Magyari-Köpe, Y. Nishi, Tech. Digest VLSI Symp., 2011.

• Hydrogen diffused into the vacancy site induces the rupture of the conductive channel by localizing electrons.

S.G. Park, B. Magyari-Köpe, Y. Nishi, Tech. Digest VLSI Symp., 2011.

K.Kamiya, M.Y. Yang, S.G. Park, B. Magyari-Köpe, Y. Nishi, M. Niwa, and K. Shiraishi, APL 2012 L. Zhao, S.G. Park, B. Magyari-Köpe, et al., submitted 2012.

L. Zhao, S.G. Park, B. Magyari-Köpe, et al., submitted 2012.

Macroscopic Switching Model

Vacancies in random

V_o ordered domains

Disruption of V_o ordering

- V_o concentration increases locally $\rightarrow V_o$ become ordered. (LRS)
- Thermal heating by high current density \rightarrow V_o diffuse out (HRS)
- S.G. Park, B. Magyari-Köpe, Y. Nishi, Tech. Digest VLSI Symp., 2012.

Summary and Outlook

- The multi-oxygen vacancy configuration is linked to the formation of a metallic filament.
- The chain like vacancy configurations may account for the higher conductivity observed in oxygen deficient TiO₂ and other transition metal oxides, i.e. NiO and HfO₂.
- Filament rupture can take place by oxygen or hydrogen at substitutional sites.
- Electron transport and interface effects also contribute to the formation of vacancy configurations – to be investigated.