

PCIe Testing for Quality and Reliability

Michael Bellon Vice President of Engineering, Flexstar Technology

Why Test?

PCIe is just another form of SSD, after all

- Most of the tests apply since the requirements for performance and functionality remain the same
- PCIe devices have different characteristics that separate them from standard SSDs:
 - the interface to the system motherboard is through a different technology
 - they tend to consume more power than SSDs
 - -different airflow requirements

Software Environment

Performance (PTS)	Endurance (JEDEC)	Customer Specific	Serial					
	Self Test							
Device								

- Most software challenges are on the test system side
 - Current interface standards ATA / SCSI are employed
 - OS-aware hot-swap
 - Controller integration
- Industry standard tests are defined
 - JEDEC: JESD218A and JESD219 for reliability and endurance
 - SNIA: Solid State Storage Performance Test Specification
- Testing is tailored to the specific product lifecycle phase

JEDEC Certification

The JEDEC Solid State Technology Association sets requirements for Client and Enterprise application classes based on endurance ratings.

The following are the conditions that need to be satisfied:

- SSDs maintain capacity
- SSDs maintain the required Uncorrectable Bit Error Rate (UBER)
- SSDs meet the required Functional Failure Requirement (FFR)
- SSDs maintain data due to loss of power for time requirements for its respective application class

Table C.1 — Expected retention (weeks) at different use temperatures

SNIA Certification

The Storage Networking Industry Association (SNIA) test process is highly dependent on:

- its prior usage
- the pretest state of the device
- the testing parameters

The SNIA testing procedure includes the following:

- IOPs Test
- Throughput Test
- Latency Test

PTS	S-C	IOPS Table - R/W Mix x BS									
ST9640322AS											
Test Run Date: 07/25/2012 11:38:46		Report Run Date: 08/20/2012 14:59:49									
IOPS Test - Ave IOPS vs. Block Size & R/W Mix %											
SNIA SSS TWG: SolidState Storage Performance Test Specification (PTS)						Rev. 0.0.1					
							4 of 16				
Device Under Test (DUT)		VENDOR: Company	DUT Model NO: ST9640322AS SP D		SPONSOR: DeskTop	Flexstar					
Serial No.	SWXXXVLE	DUT	Preparation	Test Loop Parameters St		Steady :	eady State				
Firmware Rev	000285M2	Purge	UNKNOWN	REQUIRED:		Convergence	Yes				
Capacity	640 GB	Pre-Conditioning		Data Pattern Random		Rounds	1-5				
NAND Type	Nerd	Workload		Tester's Choice:		PC AR	100%				
Device UF	SATA 1.5 Gb/Sec	Independent	UNKNOWN	OIO/Thread ((QD) UNINOWN	AR AMOUNT	16 GIB				
Test Platform	Peg2	Workload Dep.	UNKNOWN	Thread Count (TC) 3		AR Segments	2048				

Functional / User Defined

- What can be done with Interface testing
 - Ensure compliance to interfaces
 - Monitor failure modes
 - Power margining
 - Power cycling
 - FTL functionality to LBA write to LBA read
 - Correctness of garbage collection, wear leveling
 - Tailored to expected use case
- What cannot be done with Interface testing
 - Algorithm efficiency
 - No access to Meta data (SMART typical though)
- What can be done through self test
 - Handled by the FTL
 - Algorithm correctness
- Current limitation due to emulation of SCSI / ATA interface

The Challenges of PCIe Testing

- Challenges exist in the areas of mechanical, electrical and software
- Typical SSD constraints still apply:
 - Environmental and Burn-in test systems are employed to accelerate device wear
 - Isolation of the support electronics is required
 - Independent device removal without interrupting other DUT
- Maintaining a set airflow around a PCIe device in the test environment is difficult due to turbulence caused by differing form factors
- Electrically challenging due to ultra long traces for signal integrity

Airflow Across PCIe Devices

- Demonstrated airflow is across a single DUT
 - Air column from the back
 - Return airflow from the front
 - Two redirection points
- Large variance across the DUT length:
 - 400 LFM at trailing edge
 - 1800 LFM at leading edge

Takeaway

Plan for airflow optimization with respect to device geometry

Future Predictions

- PCIe 3.0 will push electrical integrity harder
- Software should become easier as standards are set for communication and interface
 - NVMe / SOP adoption
- Mechanical challenges will continue until a 2.5" or 3.5" form factor is universally accepted
- The need for devices to be easily hot swappable will continue
- Increased LFM to eliminate cumulative heat

Feedback

- Questions
- Feedback
- Discussion