
I N
 V

 E
 N

 T
 I

 V
 E

Non-Volatile Design
Verification Challenges
Scott Jacobson

Agenda

• NAND Flash growth
• ECC Problems and Approaches
• ECC Trends
• Verification challenges
• Alternatives
• Future

September 7, 2012 2

Demand forecast by application

September 7, 2012 3

Growth in SSDs adding to the consumption growth of Handsets
and Tablets

Demand forecast

September 7, 2012 4

NAND Flash growth trends are worldwide

Pricing Pressure

September 7, 2012 5

At the same time that demand is increasing, prices keep dropping

MLC versus SLC

September 7, 2012 6

Growth pressures
for higher density
and higher
performance has
driven the transition
from SLC to MLC

This transition does
not come at no
cost, increased
capacity also
increases
sensitivity to errors

MLC –vs- SLC, cont…

September 7, 2012 7

Not only does the
capacity increase
demand higher
amounts of ECC per
block, but it also
decreases
endurance

Reliability
SLC MLC

Endurance
(ERASE/PROGRAM cycles)

<100000 <10000

NOP (partial page
programming)

1 4

ECC (per 512 bytes) 1 4+

WinHEC 2007

NAND Flash Scaling

September 7, 2012 8

Additionally, in
order to keep
up with the
lowest cost
manufacturing
solutions,
NAND Flash
technology
must also scale
with process
technology

Agenda

• NAND Flash growth
• ECC Problems and Approaches
• ECC Trends
• Verification challenges
• Alternatives
• Future

September 7, 2012 9

Wear Leveling

• Required on both SLC and MLC devices
– SLC typically endures up to 100k Program/Erase Cycles
– MLC typically endures up to 10k Program/Erase Cycles

• Distributes the write cycles more evenly across the
entire FLASH device

September 7, 2012 10

Read Disturb

• High # of reads can cause changes in surrounding cells
if not re-written

• Results in data loss
• Periodic re-write of surround cells alleviates the problem

September 7, 2012 11

Data Retention

• Data Retention endurance affected by program/erase
cycles
– Limit reads to reduce read disturb
– Limit program/erase cycles in blocks that need long retention

September 7, 2012 12

FLASH ECC Approaches

September 7, 2012 13

Current ECC approaches

Traditional:

• Hamming Code
• Reed-Soloman

•Modern

• Bose, Ray-Chaudhuri, Hocquenghem (BCH)
•Low Latency, Small gate counts, small overhead, limited ECC

• Long BCH
•Medium Latency, Medium gate counts, small overhead, better ECC

• Low Density Parity Check (LDPC)
•High Latency, Large gate counts, small overhead, best ECC

 FMS 2010: Cadence

FLASH ECC approaches

• Hamming code
– Typically use on SLC NAND Flash
– Single bit error correction
– Two bit detection
– Typical bit-block Sizes (Block, Data)

• (7,4) – 3 Bytes/512 Byte sector
• (15,11)
• (31,26)

September 7, 2012 14

FLASH ECC approaches

• Reed-Soloman
– Typically used on MLC NAND Flash

• USB
• Memory cards

– Typical RS code: RS (255, 223) with 8-bit symbols
• 255 code word bytes

– 223 data bytes
– 32 parity bytes

September 7, 2012 15

FLASH ECC approaches

• BCH (Bose, Ray-Chaudhuri, Hocquenghem)
– Typically used on MLC NAND Flash

• SD Cards
• SPI
• eMMC
• Embedded NAND

– Multi-bit correction
– Improved efficiency over Reed-Soloman

• Simpler encoding/decoding techniques
• Detects concentrated and scattered errors

September 7, 2012 16

Agenda

• NAND Flash growth
• ECC Problems and Approaches
• ECC Trends
• Verification challenges
• Alternatives
• Future

September 7, 2012 17

September 7, 2012 18

FLASH ECC Trends

Some applications may not see a huge number of writes
compared to a cache application, where writes are the most
limiting parameter.

For embedded applications where booting and code are the
dominating attributes, error correction coding (ECC) and
known-good boot blocks are the most important features.

ECC has been increasing at each process node shrink.

Page size migration 1,2,4,8K soon 16K page size
Write cycles (MLC typ.) 800, 1200,1500 usec
Program erase cycles 1500, 2200,3500 usec

Table 2: Device shrinks lead to increased page size, write cycles, and program erase cycles
(numbers are industry average, not manufacturer-specific)

ONFI 3 Enables High-Speed NAND Flash Applications
Author: Bob Pierce, Cadence Design Systems

September 7, 2012 19

FLASH ECC Trends

Increasing ECC
demands drives
the cost of
increasing
number of
correction bits to
keep in step with
the larger
capacities

ONFI 3 Enables High-Speed NAND Flash Applications
Author: Bob Pierce, Cadence Design Systems

ECC Flash Trends

September 7, 2012 20

Increasing demands for multiple bit error correction requires
 use of multiple ECC methods

FMS 2010: Cadence

ECC application

September 7, 2012 21

Different applications require
different approaches to ECC

Use model for systems
guide the cost/benefit
tradeoff of ECC

Ultimate focus is to establish
acceptable Bit Error Rates (
BER) based on use model
and optimize ECC costs to
maintain that target

WinHEC 2007

Agenda

• NAND Flash growth
• ECC Problems and Approaches
• ECC Trends
• Verification challenges
• Alternatives
• Future

September 7, 2012 22

Memory Verification Challenges

• To effectively verify ECC performance in simulation, one
needs to be able to
– Inject errors into memories during simulation
– Set assertions

• Memory
• Data
• Parity Checking

– Explore memory space
• Width expansion
• Depth expansion
• Interleaving
• Address scrambling

– Internal memory register access

September 7, 2012 23

Memory Model Verification Features
• Error injection and Fault modeling for memory and ports

– $mmerrinject *interval *data bit *percentage of errors

 $mmerrinject(m_id, "-seed 12 -reads 5 10 -bits 1 2 4 –

 percent 80 15 5");

– $mmfault, $mmsigfault *stuck-at *transition *coupling

 mmfault(<instance id>,”<type> ”,<addr>,<bit>,<value>,<slave addr>,<slave bit>);

 // Stick bit 5 of address=0x40 to “0”
 err_id = $mmfault(m_id, “stuck-at”, ‘h40, ‘h5, ‘h0);

 // Make bit 2 of address=0x20 unable to transition to a ‘1’
 err_id = $mmfault(m_id, “transition”, ‘h20, ‘h2, ‘h1);

September 7, 2012 Cadence Confidential: Cadence Internal Use Only 24

Memory Model Verification Features
• Setting assertions on memory access, data access and

parity checking
– $mmassert_access

mmassert_access(<instance id>,“<access>”,“<action>”,<start address>,<end

address>,[<address increment>]);

 * Read - a read of a memory location.
 * Write - a write to a memory location.
 * ReadorWrite - either a read or a write
 * ReadnoWrite - a read of a memory location without a previous write to that

location.
 * ReadRead - two consecutive reads to the same memory location.
 * WriteWrite - two consecutive writes to the same memory location.

 // stop the simulation whenever locations 0x0 through 0x100 are written:
 $mmassert_access(m_id,”write”,”break”,’h0,’h100,’h1);

September 7, 2012 Cadence Confidential: Cadence Internal Use Only 25

Memory Model Verification Features
• Creating system memory for width expansion, depth

expansion, interleaving, address scrambling
– $mmcreatesysmem ,

– $mmaddtosysmem

– $mmaddressmap

September 7, 2012 Cadence Confidential: Cadence Internal Use Only 26

Accessing internal registers of memory
• Internal registers of the memory gets automatically

instantiated when you instantiate a type of memory

September 7, 2012 Cadence Confidential: Cadence Internal Use Only 27

 # *Denali* Class: ddr3sdram Instance: "testbench.model" Size: 524288Kx16

 # *Denali* Class: internal Instance: "testbench.model(initStatus_registers)" Size: 1x32

 # *Denali* Class: internal Instance: "testbench.model(mode_registers)" Size: 4x32

 # *Denali* Class: internal Instance: "testbench.model(bank_status_registers)" Size: 16x32

 # *Denali* Class: internal Instance: "testbench.model(model_status_registers)" Size: 1x32

 # *Denali* Class: internal Instance: "testbench.model(multi_purpose_register)" Size: 8x1

 # *Denali* Class: internal Instance: "testbench.model(den)" Size: 3x32

• The internal registers can be accessed independently
 as they have unique instance id’s
integer memId, bankId, modeId;

memId = $mminstanceid("testbench.model");
modeId = $mminstanceid("testbench.model(mode_registers)");
bankId = $mminstanceid("testbench.model(bank_status_registers)”);

Agenda

• NAND Flash growth
• ECC Problems and Approaches
• ECC Trends
• Verification challenges
• Alternatives
• Future

September 7, 2012 28

What’s next?

• Managed NAND Solutions
– Vendor and technology independence

• ECC
• Partial page program operations
• Commands and interfaces

– eMMC 4.5
– UFS

September 7, 2012 29

eMMC

September 7, 2012 30

UFS..

September 7, 2012 31

Agenda

• NAND Flash growth
• ECC Problems and Approaches
• ECC Trends
• Verification challenges
• Alternatives
• Future

September 7, 2012 32

Trends

September 7, 2012 33

• ECC approaches continue to be more complex and
must be used judiciously based on application targets

• High IOPS application requirements continue the
drive for higher transfer rates

• Managed NAND solutions becoming more complex
in implementation but more standardized in
approaches

• Don’t forget verification

NAND Architecture

September 7, 2012 35

FLASH ECC background

September 7, 2012 36

• NAND flash architecture was introduced by Toshiba in 1989. These memories are accessed much like block devices, such as hard disks
or memory cards. Each block consists of a number of pages. The pages are typically 512[14] or 2,048 or 4,096 bytes in size. Associated
with each page are a few bytes (typically 1/32 of the data size) that can be used for storage of an error correcting code (ECC) checksum.

• Typical block sizes include:
• 32 pages of 512+16 bytes each for a block size of 16 KB
• 64 pages of 2,048+64 bytes each for a block size of 128 KB[15]
• 64 pages of 4,096+128 bytes each for a block size of 256 KB[16]
• 128 pages of 4,096+128 bytes each for a block size of 512 KB.
• While reading and programming is performed on a page basis, erasure can only be performed on a block basis.[17] Number of Operations

(NOPs) is the number of times the pages can be programmed. So far, this number for MLC flash is always one, whereas for SLC flash, it
is four.[citation needed]

• NAND devices also require bad block management by the device driver software, or by a separate controller chip. SD cards, for example,
include controller circuitry to perform bad block management and wear leveling. When a logical block is accessed by high-level software,
it is mapped to a physical block by the device driver or controller. A number of blocks on the flash chip may be set aside for storing
mapping tables to deal with bad blocks, or the system may simply check each block at power-up to create a bad block map in RAM. The
overall memory capacity gradually shrinks as more blocks are marked as bad.

• NAND relies on ECC to compensate for bits that may spontaneously fail during normal device operation. A typical ECC will correct a one-
bit error in each 2048 bits (256 bytes) using 22 bits of ECC code, or a one-bit error in each 4096 bits (512 bytes) using 24 bits of ECC
code.[18] If the ECC cannot correct the error during read, it may still detect the error. When doing erase or program operations, the device
can detect blocks that fail to program or erase and mark them bad. The data is then written to a different, good block, and the bad block
map is updated.

• Most NAND devices are shipped from the factory with some bad blocks. These are typically marked according to a specified bad block
marking strategy. By allowing some bad blocks, the manufacturers achieve far higher yields than would be possible if all blocks had to be
verified good. This significantly reduces NAND flash costs and only slightly decreases the storage capacity of the parts.

• When executing software from NAND memories, virtual memory strategies are often used: memory contents must first be paged or
copied into memory-mapped RAM and executed there (leading to the common combination of NAND + RAM). A memory management
unit (MMU) in the system is helpful, but this can also be accomplished with overlays. For this reason, some systems will use a
combination of NOR and NAND memories, where a smaller NOR memory is used as software ROM and a larger NAND memory is
partitioned with a file system for use as a non-volatile data storage area.

• NAND sacrifices the random-access and execute-in-place advantages of NOR. NAND is best suited to systems requiring high capacity
data storage. It offers higher densities, larger capacities, and lower cost. It has faster erases, sequential writes, and sequential reads.

http://en.wikipedia.org/wiki/Block_size_(data_storage_and_transmission)
http://en.wikipedia.org/wiki/Flash_memory
http://en.wikipedia.org/wiki/Error_correcting_code
http://en.wikipedia.org/wiki/Checksum
http://en.wikipedia.org/wiki/Flash_memory
http://en.wikipedia.org/wiki/Flash_memory
http://en.wikipedia.org/wiki/Flash_memory
http://en.wikipedia.org/wiki/Wikipedia:Citation_needed
http://en.wikipedia.org/wiki/Flash_memory_controller
http://en.wikipedia.org/wiki/Wear_leveling
http://en.wikipedia.org/wiki/Flash_memory
http://en.wikipedia.org/wiki/Virtual_memory
http://en.wikipedia.org/wiki/Paging
http://en.wikipedia.org/wiki/Memory_management_unit
http://en.wikipedia.org/wiki/Memory_management_unit
http://en.wikipedia.org/wiki/Overlay_(programming)

ECC Hardware Example

September 7, 2012 37

	Non-Volatile Design Verification Challenges
	Agenda
	Demand forecast by application
	Demand forecast
	Pricing Pressure
	MLC versus SLC�
	MLC –vs- SLC, cont…
	NAND Flash Scaling
	Agenda
	Wear Leveling
	Read Disturb
	Data Retention
	FLASH ECC Approaches
	FLASH ECC approaches
	FLASH ECC approaches
	FLASH ECC approaches
	Agenda
	FLASH ECC Trends
	FLASH ECC Trends
	ECC Flash Trends
	ECC application
	Agenda
	Memory Verification Challenges
	Memory Model Verification Features
	Memory Model Verification Features
	Memory Model Verification Features
	Accessing internal registers of memory
	Agenda
	What’s next?
	eMMC
	UFS..
	Agenda
	Trends
	Slide Number 34
	NAND Architecture
	FLASH ECC background
	ECC Hardware Example

