

reFresh SSDs: Enabling High Endurance, Low Cost Flash in Datacenters

¹Vidyabhushan Mohan

²Sriram Sankar ¹Sudhanva Gurumurthi

¹Department of Computer Science, University of Virginia ²Microsoft

[1] Amazon.com. As of September 2011

Computer Science

4

- Tradeoff between endurance and data retention
- SSDs and datacenter workloads
- reFresh SSDs Architecture and Operation
- Design and Evaluation

Tradeoff between Endurance and Data Retention for 2-bit MLC

Impact of P/E Cycle Time on Data Retention

Workload ^[3]	Total I/Os (millions)	Read/Write Ratio
Display Ads Platform Payload Server (SSD-DAPPS)	10.9	1:1.2
Exchange Server (SSD-EXCH)	22	1:2.2
MSN File Server (SSD-MSNFS)	15.54	1:1.2
MSN Metadata Server (SSD-MSNCFS)	7.8	1:0.64

SSD traces extrapolated from HDD I/O traces of enterprise workloads

[3] HDD Traces from IOTTA Trace Repository from SNIA - <u>http://iotta.snia.org/</u>

How Long Do Enterprise SSDs Last?

reFresh SSDs: Making MLC SSDs Usable in Datacenters

- Uses low endurance MLC flash.
 - Low cost, high performance (compared to eMLC)
- Useful for enterprise applications which do not require high data retention.
 - Tradeoff retention for higher endurance
- Exploit and Export application's knowledge of data lifetime to increase SSD lifetime.
 - Applications with different lifetime requirements can co-exist

- Refresh Queue
 - Managed by the SSD controller
 - Queue entries Pointers to physical flash blocks that have valid data
 - Priority queue Sorted by block lifetime

• Most important blocks to be refreshed are at the head

PBRP – Block lifetime (Physical Block Retention Period)VRP – Application specified lifetime (Virtual Retention Period)

Refresh operation invoked at regular intervals on blocks in the refresh queue

Unlike wear leveling, refresh operations are triggered to handle a immediate deadline (PBRP < VRP)

- Metrics
 - Endurance
 - Variation of performance with age
- Input Parameters
 - Data lifetime (as specified by the application)
 - SSD properties
 - Enterprise application I/O traces

Evaluating reFresh SSDs with 1 month Retention

Evaluating reFresh SSDs with 1 year Retention

Lower the better

- Controller Modifications
 - Manage a refresh queue to keep track of block lifetime
 - Store additional metadata for each page
 - Data lifetime, block lifetime
 - No hardware change required, just modify firmware
- Host/Interface Modifications
 - Applications provide data lifetime information to the SSD controller
 - NVM Express already provides dataset management commands

Extend the command set to provide data lifetime Compute

- reFresh SSDs
 - Uses low endurance flash
 - Smart controller design to increase SSD lifetime
 - Uses application specified data lifetime.
 - Applications with different retention period requirements can co-exist
 - Increases SSD lifetimes by 6-56% for various enterprise workloads

Questions?

mohan@cs.virginia.edu

Paper here - www.cs.virginia.edu/~vm9u

Backup slides

Evaluating reFresh SSDs with 1 month Retention

Memory Refresh vs Wear Leveling

Wear Leveling	Refresh Operations
Triggered to balance wear-out of blocks	Triggered when PBRP drops below VRP
Manages reliability over a long term	Triggered due to handle immediate deadlines
No knowledge about data lifetime	Takes data lifetime into account.

Evaluating reFresh SSDs with 1 year Retention

