

TRADITIONAL STORAGE STACK

FLASH IN TRADITIONAL STORAGE STACKS

VIRTUAL STORAGE LAYER

- Cut-thru architecture –
 avoids traditional storage protocols
- Scales with multi-core
- HW/SW functional boundary defined as optimal for flash
- Traditional block access methods for compatibility
- New access methods, functionality and primitives natively supported by ioMemory

FLASH MEMORY EVOLUTION

EXPLOITING NATIVE CHARACTERISTICS OF IOMEMORY

- 1. Native log-append writes incorporates **copy-on-write** basics
- 2. Native block mapping and allocation incorporate **file system** basics
- 3. Native large virtual address space incorporates sparse semantics
- 4. Native storage methods incorporate **key-value store** basics

DIRECTFS – NATIVE FILE NAMESPACE FOR FLASH

DIRECTFS

- Appears as any other file system in Linux
- Applications can use directFS filesystem unmodified with performance benefits
- Focuses only on file namespace
- Employ virtualized flash storage layer's logic for:
 - Large virtualized addressed space
 - Direct flash access
 - Crash recovery mechanisms
- Exposes VSL Primitives through file namespace
 - Applications can use SDK through directFS or directly to VSL

DIRECTES – ELIMINATING DUPLICATE LOGIC

DIRECTFS SIMPLICITY – LINES OF CODE

File System	Lines of Code	
DFS	6879	
ReiserFS	19996	
Ext4	25837	
Btrfs	51925	
XFS	63230	

DIRECTFS - NATIVE FILE NAMESPACE FOR SDK API LIBRARIES

FUSION-10

VSL Primitives
Exported by directFS

VSL Primitives used by directFS

DirectFS exports VSL Primitives

DIRECTFS – SIMPLIFIED BLOCK MAPPING THROUGH NATIVE SPARSE VIRTUAL ADDRESSING

FUSION-10

Conventional file systems on block storage

August 12, 2012

DIRECTFS - SIMPLIFIED BLOCK MAPPING THROUGH NATIVE SPARSE VIRTUAL ADDRESSING

- DirectFS files mapped directly to sparse address space
- Removes mapping layers
- Allows file aware NVM optimizations and features

DIRECTFS - EXAMPLE: FALLOCATE

- Fallocate() preallocate large files
- In conventional file systems
 - Write zeros for a large file to the physical media
- directFS
 - Pre-allocate virtual address space
 - Minimal writing to device only to commit virtual address allocation
 - No need to write physical zeros to the entire file

DIRECTFS – CRASH SAFE THROUGH ATOMIC DATA AND METADATA UPDATE OPERATIONS

- Conventional file systems
 - Journal for power cut safety
 - Allows replay of transactions after crash
- directFS
 - Leverages atomics features of VSL
 - Can implement crash safety without journaling

DIRECTFS – INITIAL PROTOTYPE PERFORMANCE FOR UNMODIFIED APPS

FUSION-io

Application	Ext3	DFS Prototype	Speedup
Quick Sort	1268	822	1.54
N-Gram	4718	1912	2.47
KNNImpute	303	248	1.22
VM Update	685	640	1.07
TPC-H	5059	4154	1.22

