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VIRTUAL STORAGE LAYER

Cut-thru architecture —
avoids traditional storage protocols

Scales with multi-core

HW/SW functional boundary
defined as optimal for flash

Traditional block access methods for
compatibility

New access methods, functionality
and primitives natively supported by
ioMemory

FUSION-IO
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FLASH MEMORY EVOLUTION g

FUSION-iO I Native Access
ioMemory as ioMemory as ioMemory with ioMemory with
Legacy SSDs ioDrive Transparent Cache direct access 1/0 memory semantics

Application Application Application Application Application

Open Source Open Source
Extensions Extensions

Direct-access I/0 Memory Semantics
API Family API Family

File System File System .
directFS —

native file directFS
Block Layer Block Layer system service

Application

OS Block I/0 OS Block 1/0

OS Block I/O0

Application

File System

Host

Block Layer
SAS/SATA

Host

Network directCache

VSL
=3l RAID Controller Virtual Storage VSL VSL
£ VSL
: I I R
Read/Write Read/Write Read/Write Read/Write Read/Write Load/Store

August 12,
2012



EXPLOITING NATIVE CHARACTERISTICS OF FUSiON-iO
IOMEMORY

1. Native log-append writes
copy-on-write basics

2. Native block mapping and allocation
file system basics

3. Native large virtual address space
sparse semantics

4. Native storage methods
key-value store basics
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DIRECTFS - NATIVE FILE NAMESPACE FOR FLASH rFusion-io
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DIRECTFS FUSION-iO

Appears as any other file system in Linux

Applications can use directFS filesystem unmodified
with performance benefits

Focuses only on file namespace

Employ virtualized flash storage layer’s logic for:

Large virtualized addressed space
Direct flash access
Crash recovery mechanisms

Exposes VSL Primitives through file namespace
Applications can use SDK through directFS or directly to VSL
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DIRECTFS - ELIMINATING DUPLICATE LOGIC FUSiON-iO
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DIRECTFS SIMPLICITY - LINES OF CODE
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DIRECTFS — NATIVE FILE NAMESPACE FOR
SDK API LIBRARIES

VSL
Primitives
accessed
directly

Application

Key Value API and Library
— fixed “zero” metadata, leverages VSL

DirectFS — Namespace
File/Offset -> Sparse Address

VSL — Dynamic provisioning,

DirectFS exports VSL Primitives
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DIRECTFS - SIMPLIFIED BLOCK MAPPING THROUGH
NATIVE SPARSE VIRTUAL ADDRESSING

Conventional file systems on block storage
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DIRECTFS - SIMPLIFIED BLOCK MAPPING THROUGH FUSiON-iO
NATIVE SPARSE VIRTUAL ADDRESSING

DirectFS — files mapped directly to sparse address space
Removes mapping layers
Allows file aware NVM optimizations and features

Inode Inode Inode
1 2 3

Sparse virtual address space

Physical address space
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DIRECTFS - EXAMPLE: FALLOCATE FUSiON-iO

Fallocate() — preallocate large files

In conventional file systems
Write zeros for a large file to the physical media

directFS

Pre-allocate virtual address space

Minimal writing to device — only to commit virtual address
allocation

No need to write physical zeros to the entire file
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DIRECTFS - CRASH SAFE THROUGH ATOMIC DATA
AND METADATA UPDATE OPERATIONS

Conventional file systems
Journal for power cut safety
Allows replay of transactions after crash

directFS

Leverages atomics features of VSL
Can implement crash safety without journaling
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FOR UNMODIFIED APPS
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