NATIVE FLASH SUPPORT FOR APPLICATIONS
Nisha Talagala

Y,
(A”. TRADITIONAL STORAGE STACK FUSiON-iIO

User
space Application
Kernel Filesystem
space
Block Device
Hardware LBA view enforced by Storage

Protocols (SCSI/SATA etc)

August 12,
2012

Fusion-io Confidential 2

Y,
(A" FLASH IN TRADITIONAL STORAGE STACKS FUSiON-iIO

User
space Application
Kernel Filesystem
space t
Block Device
LBA
e Flash Translation Layer
Hardware Virtually Addressing LBA — PBA

August 12,
2012

Fusion-io Confidential 3

%

VIRTUAL STORAGE LAYER

Cut-thru architecture —
avoids traditional storage protocols

Scales with multi-core

HW/SW functional boundary
defined as optimal for flash

Traditional block access methods for
compatibility

New access methods, functionality
and primitives natively supported by
ioMemory

FUSION-IO

4 N
Host
c
DRAM / z .2
O ®
Memory / £ o CPU and
Operating Systemand | = 3 cores
. . o T
Application Memory IS
ety
Data
Transfers Commands
L v
PCle
. Ea— \
ioDrive

‘Em

Data-

ioMemory
Path Controller

EEEE

Channels Wide

Augu
2012

st 12,

%

FLASH MEMORY EVOLUTION g

FUSION-iO I Native Access
ioMemory as ioMemory as ioMemory with ioMemory with
Legacy SSDs ioDrive Transparent Cache direct access 1/0 memory semantics

Application Application Application Application Application

Open Source Open Source
Extensions Extensions

Direct-access I/0 Memory Semantics
API Family API Family

File System File System .
directFS —

native file directFS
Block Layer Block Layer system service

Application

OS Block I/0 OS Block 1/0

OS Block I/O0

Application

File System

Host

Block Layer
SAS/SATA

Host

Network directCache

VSL
=3l RAID Controller Virtual Storage VSL VSL
£ VSL
: I I R
Read/Write Read/Write Read/Write Read/Write Read/Write Load/Store

August 12,
2012

EXPLOITING NATIVE CHARACTERISTICS OF FUSiON-iO
IOMEMORY

1. Native log-append writes
copy-on-write basics

2. Native block mapping and allocation
file system basics

3. Native large virtual address space
sparse semantics

4. Native storage methods
key-value store basics

%

DIRECTFS - NATIVE FILE NAMESPACE FOR FLASH rFusion-io

Application
user-space

kernel-space

VFS (virtual file system) abstraction layer

ext3 I btrfs I xfs directFS

Kernel block layer

ioMemory VSL— Dynamic provisioning,
Block allocation, logging etc.

August 12,
2012

%

DIRECTFS FUSION-iO

Appears as any other file system in Linux

Applications can use directFS filesystem unmodified
with performance benefits

Focuses only on file namespace

Employ virtualized flash storage layer’s logic for:

Large virtualized addressed space
Direct flash access
Crash recovery mechanisms

Exposes VSL Primitives through file namespace
Applications can use SDK through directFS or directly to VSL

%

DIRECTFS - ELIMINATING DUPLICATE LOGIC FUSiON-iO

Application
user-space

kernel-space

VFS (virtual file system) abstraction layer
I

Ext3
file metadata mgmt,
block allocation, mapping, recycling,
ACID updates, logging/journaling, crash-recovery,
Updates: Availability: Grooming:

e atomic write() exists() PTRIM()
Kernel block layer ‘1’ ‘l' l'

directFS
file metadata mgmt

ACID Block Block

ioMemory VSL
block allocation, mapping, recycling
ACID updates, logging/journaling, crash-recovery,

August 12,
2012

%

DIRECTFS SIMPLICITY - LINES OF CODE

DFS
ReiserFS
Ext4
Btrfs

XFS

Lines of Code

File System

6879

19996

25837

51925

63230

August 12,

2012

FUSION-IiO’

10

%

DIRECTFS — NATIVE FILE NAMESPACE FOR
SDK API LIBRARIES

VSL
Primitives
accessed
directly

Application

Key Value API and Library
— fixed “zero” metadata, leverages VSL

DirectFS — Namespace
File/Offset -> Sparse Address

VSL — Dynamic provisioning,

DirectFS exports VSL Primitives

August 12,
2012

FUSION-IiO’

VSL Primitives
Exported by directFS

VSL Primitives
used by directFS

1

DIRECTFS - SIMPLIFIED BLOCK MAPPING THROUGH
NATIVE SPARSE VIRTUAL ADDRESSING

Conventional file systems on block storage

Inode
3

File offset -> block
mapping

Storage address space

S ———

Physical address space

August 12,
2012

FUSION-IO

12

%

DIRECTFS - SIMPLIFIED BLOCK MAPPING THROUGH FUSiON-iO
NATIVE SPARSE VIRTUAL ADDRESSING

DirectFS — files mapped directly to sparse address space
Removes mapping layers
Allows file aware NVM optimizations and features

Inode Inode Inode
1 2 3

Sparse virtual address space

Physical address space

August 12,
2012

13

%

DIRECTFS - EXAMPLE: FALLOCATE FUSiON-iO

Fallocate() — preallocate large files

In conventional file systems
Write zeros for a large file to the physical media

directFS

Pre-allocate virtual address space

Minimal writing to device — only to commit virtual address
allocation

No need to write physical zeros to the entire file

%

DIRECTFS - CRASH SAFE THROUGH ATOMIC DATA
AND METADATA UPDATE OPERATIONS

Conventional file systems
Journal for power cut safety
Allows replay of transactions after crash

directFS

Leverages atomics features of VSL
Can implement crash safety without journaling

FUSION-IO

Y,
/A" DIRECTFS - INITIAL PROTOTYPE PERFORMANCE

FOR UNMODIFIED APPS

Ext3

FUSION-IO

Speedup

Application

Quick Sort
N-Gram
KNNImpute
VM Update

TPC-H

1268
4718
303
685

5059

DFS Prototype

822
1912
248
640

4154

August 12,
2012

1.54
2.47
1.22
1.07
1.22

16

