

Flash Optimized Databases and Data Stores

Dr. Brian O'Krafka San Disk Corporation Fellow

Tutorial G-31: Enterprise Applications Part 3 Database/Data Management Acceleration Thursday, August 23 From 8:30 to 10:50 am

Abstract

Tremendous technology advances have been made in recent years that offer the potential for major data center improvements. Commodity hardware industry advances in enterprise flash memory and multi-core processors offer vast improvements in performance while reducing power and space consumption.

New database and datastore software architectures are required to exploit these hardware advances to provide commensurate improvements in data center performance, scalability, availability and cost structure.

In this presentation we will discuss these technologies along with resulting data center and IT transformations. We will provide several case studies of mission critical enterprise deployments that demonstrate the use cases and the benefits.

Flash Optimized Databases and Data Stores

- Flash breaks IOP bottleneck, but whole system must be optimized
- Example 1: Membrain Key/Value Cache/Store
- Example 2: SchoonerSQL Database
- Conclusion

3

100's to 1000's of GB of Flash Holds Database, Provides 10,000's of Write IOPS, 10,000's of Read IOPS at 10's of microseconds latency

Diminishing Returns Without System Optimization

TPS/ Node	In DRAM	In Flash		TPS/ Node	In Hard Drives	In Flash
Cassandra	10,500	1,790	MyS	MySQL 5.5	7,500 TPM	20,000 TPM
MongoDB	49,000	4,000				

Benchmark

- Random key-value query of 32M (fits in DRAM) and 64M (fits in Flash) 1kB objects
- dual quad-core Intel Nehalem processors
- 64 GB of DRAM
- 1/2 TB of flash

DBT2 open-source OLTP version of TPC-C

- 1000 warehouses, 32 connections
- 0 think-time
- Result metric: TPM (new order)

Measurement Configuration

- 2 node Master-Slave configuration
- 2 socket Westmere
- 72GB DRAM

Example 1: Membrain HA Cache and Key-Value Store

100% memcached compatible

Membrain Versus NoSQL Alternatives

TPS/ Node	In DRAM	In Flash
Cassandra	10,500	1,790
MongoDB	49,000	4,000
Membrain	310,000	160,000

Benchmark

- Random key-value query of 32M (fits in DRAM) and 64M (fits in Flash) 1kB objects
- dual quad-core Intel Nehalem processors
- 64 GB of DRAM
- 1/2 TB of flash

Benchmark

- Random gets (95%) and puts (5%) to 2kB (avg) objects (35% DRAM miss rate)
- Dual Intel Westmere processors
- 64 GB of DRAM
- ▶ ½ TB of flash

SanDisk[®]

Membrain Customer Deployment Example

- 8:1 server consolidation + 10.1 power reduction
- 95% availability improvement
 - With transparent synchronous replications and automated failover

Membrain's Consolidation and Power Savings

Cumulative % reduction in downtime

SanDisk

What Was Required to Exploit Flash?

Intelligent DRAM caching:

- Most recently used objects are cached in DRAM
- Highly space efficient, even for very small objects (~100B)
- Self-balancing as object sizes vary over time
- DRAM cache is shared by all containers
- Writeback or write-through (customizeable to workload)
- Custom lightweight threading to maximize concurrency and minimize response time
 - User-space thread scheduler uses polling to avoid cost of OS context switches
- Configurable flash management algorithms to optimize different workloads:
 - FIFO mode: multiple updates are accumulated in a FIFO buffer and written as a batch
 - Good for caching when overwrite rates are low
 - Slab mode: storage is managed as power-of-2 slabs
 - Good for persistence and when overwrite rates are high

• High Performance Replication with fully automatic failover and failback:

- High throughput, low latency synchronous replication
- Fully automatic failover using VIP's
- Fully automatic failback when a failed node comes back online
- Fast data transfer to recovering node

SanDisk

Example 2: SchoonerSQL Database

SanDisk[®]

Benefits of Flash Optimizations in SchoonerSQL

DBT2 open-source

OLTP version of TPC-C

- 1000 warehouses, 32 connections
- 0 think-time
- Result metric: TPM (new order)

Measurement Configuration

2 node Master-Slave configuration

Transaction Throughput

with Hard Disks (kTpm)

MySQL 5.5

Semi-sync

- 2 socket Westmere
- 72GB DRAM

SanDisk

MySQL 5.5

Async

20

10

0

Flash Memory Summit 2012 Santa Clara, CA

5.1 Sync

SchoonerSQL: Higher Performance Means Lower Cost of Ownership

 Reduced capital and operating costs through reduction in servers, power, space, admin

Relative Total Cost of Ownership

- TCO and ROI models are customer and workload specific
- Function (throughput/server; server, rack, and network costs, software license and support costs, admin costs; space and power costs; cost of downtime)

What Was Required to Exploit Flash?

- Intelligent DRAM caching:
 - Optimized buffer pool management algorithms
 - Scan resistance
 - Optimized double write buffer management
- Locking optimizations to reduce lock granularity
- Efficient file syncing
- High Performance Synchronous Replication with fully automatic failover and failback:
 - High throughput, low latency synchronous replication
 - Fully automatic failover using VIP's
 - Fully automatic failback when a failed node comes back online
 - Fast data transfer to recovering node
- High Performance Asynchronous Replication

Conclusion

- Commodity servers + flash + optimized software
 → more performance per watt, cubic foot, \$\$\$
- Consolidation made possible with flash requires robust HA:
 - Need high performance replication
- Package common optimizations in an open SDK to simplify flash optimization of new applications

SanDisk Flash-Accelerated Products

Schooner Membrain					
SchoonerSQL					

FlashSoft[™] Caching software

Lightning® SAS Enterprise SSD Lightning® PCIe Enterprise SSA Enterprise NoSQL Cache/Store Enterprise SQL Database

Enterprise Storage Caching

Enterprise Flash Hardware

Thank-you!