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Why are We Here? 

• Flash memory is a lossy storage medium. 
 

• Device manufacturers issue error correction mandates that must 
be met in order to guarantee data sheet specifications, e.g. write 
endurance. 
 

• In some cases, a manufacturer will recommend a particular error 
correction scheme or algorithm. 
 

• What if we can live with relaxed specifications?  Can we get away 
with less error correction? 
 

• What if we need performance beyond the data sheet 
specifications?  Can we improve performance with increased 
error correction? 
 

• How do we know how well our codes perform? 
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A Simple Channel/Storage Model 

• Example : binary symmetric channel with equal error probability for 
transmission (storage) of either 0 or 1 . 
 

• While highly simplistic, the BSC serves as a reasonable first-order 
approximation of Flash. 
 

• In this example Pe = 0.01, Pr(success) = 1 – Pe = 0.99 . 
 

• The probability of error for any single bit transmitted across the channel 
is the raw bit error rate, or RBER.  In this example, RBER = 0.01 . 
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A Simple Channel/Storage Model 

• Given n transmitted (or stored) bits, instead of simply one 
bit, what is the probability of having exactly k errors within 
those n bits? 
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A Simple Channel/Storage Model 

• Consider three stored bits (n = 3), using an RBER of 0.01 from the previous 
example… 
 

  Pr (exactly 0 errors) = (3! / (0! × 3!)) × .010 × 0.993 = 0.970299 
  Pr (exactly 1 error) = (3! / (1! × 2!)) × .011 × 0.992 = 0.029403 
  Pr (exactly 2 errors) = (3! / (2! × 1!)) × .012 × 0.991 = 0.000297 
  Pr (exactly 3 errors) = (3! / (3! × 0!)) × .013 × 0.990 = 0.000001 

 
• Probability of having x or less errors is the sum of the individual probabilities 

for k ≤ x… 
 

  Pr (1 or less errors) = 0.029403 + 0.970299 + = 0.999702 
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A Simple Channel/Storage Model 

• Example : BSC with simple 3x majority logic encoding.  Single data bits are sent 
as 3-bit code words.  A single-bit error within any code word is guaranteed to be 
“fixed”. 
 

• Raw bit error rate through the channel (RBER) remains 0.01. Code rate = 0.333 
(impractical for most storage applications). Post-decoding error rate, however, 
drops to 0.000298 – an improvement of more than 33x! 
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Extension to the Real World 

• Previous example is interesting, but not practical.  Very short code 
words are inefficient, majority logic particularly so. 
 

• Recent error correction schemes for Flash memory have relied 
heavily upon BCH codes. 
 

• BCH codes are algebraic codes.  Algebraic codes provide 
deterministic performance - they guarantee that a particular number 
of errors within a single code word can always be corrected. 
 

• Flash device manufacturers typically mandate that users correct X 
errors within Y bits.  BCH codes are a good fit for this task, since 
they can be designed to meet the manufacturer’s requirement 
deterministically – no guessing! 
 

• To really understand the performance of these codes, however, we 
first need to extend the mathematics we just covered. 
 

• Nothing we need, however, is outside the scope of a good freshman-
level or sophomore-level course in probability. 
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Extension to the Real World 

• Given a channel (or storage medium) of the type we discussed 
earlier, and an RBER for the channel, the error count within a group 
of n bits is a random variable. 
 

• The distribution of error counts can be seen in the random variable’s 
probability mass function (pmf) and cumulative distribution function 
(cdf). 

Pr (= X errors) 

Pr (≤ X errors) 
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Extension to the Real World 

• Consider a collection (codeword) of 8192 bits, written to and then 
retrieved from a memory storage device, with RBER = 3.0e-3. 
 

• The pmf illustrates the probability of occurrence for each possible error 
count within a code word. 

Pr (exactly 20 
errors) ≈ 5.7% 

Pr (exactly 24 
errors) ≈ 8.0% 

Very low / high error 
counts are highly 
improbable. 

RBER = 0.300% 

Code length = 8192 

Plot truncated 
to 68 errors 
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Extension to the Real World 

• The cumulative distribution function (cdf) is the summation (integral) of 
the probability mass function. 
 

• Given a specific number of errors, the cdf illustrates the probability of 
having less than or equal to that number of errors within a code word. 

Pr (20 or less 
errors) ≈ 20% 

For large error counts X, 
probability of ≤ X errors 
approaches 1.  Pr (≤ 8192 
errors) = 1.0. 

RBER = 0.300% 

Code length = 8192 

Plot truncated 
to 68 errors 

For small error counts X, 
probability of ≤ X errors 
approaches 0.  Pr (≤ 0 
errors) = (1 – RBER)8192 . 
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Extension to the Real World 

• Assume that we can correct 40 errors within a code word.  Probability of 
not successfully correcting = Pr (˃ 40 errors) = 1 - Pr (≤ 40 errors) ≈ 
0.0015.  This is called the frame error rate, or FER. 
 

• Correcting 41 errors drops frame error rate to ≈ 1 – 0.99916 = 0.00084.  A 
2.5% increase in correction strength yields a  44% reduction in frame error 
rate! 

Pr (≤ 40 errors) ≈ 0.9985 Pr (≤ 41 errors) ≈ 0.99916 
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RBER, UBER, and the Magic of Correction 

• To understand the error characteristics of corrected code words, we 
need to understand how error correction changes the previous 
distribution. 
 

• Assume that we can correct exactly t errors in each code word. 
 

• After correction, there will be NO code words with error counts 
ranging from 1 through t.  Corrected code words will have either 0 
errors or ˃ t errors. 
 

• In the corrected code word, Pr (0 errors) = the probability of having 
from 1 through t errors in the original code word. 
 

• The distribution of error counts in the corrected code word is heavily 
biased towards 0 errors. 
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RBER, UBER, and the Magic of Correction 

Error counts from 0 
through 40 become an 
error count of 0 after 

correction.  

Pr (exactly 0 errors) ≈ 1.0 

Error counts ˃ 40 occur 
with very low probability. 

Error counts from 1 
through 40 occur with 
exactly 0 probability. 

pre-correction error distribution post-correction error distribution 

• Assume that we can correct 40 errors in each codeword. 
 

• Error correction modifies the original distribution by “piling up” pre-
correction error counts from 0 through 40 into the post-correction “0-error” 
bin. 
 

• Error counts greater than 40 occur with exactly the same probability as 
before.  Average error count, however, is dramatically reduced. 
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RBER, UBER, and the Magic of Correction 

• Looking closely at the pmf of corrected code word errors illustrates the fact 
that error count probabilities have “piled up” at 0. 
 

• How do we use this distribution to calculate the bit error rate for corrected 
data? 

Error counts from 1 
through 40 occur with 
exactly 0 probability. 

Error counts ˃ 40 occur 
with very low (but nonzero) 
probability. 

Pr (exactly 0 errors) ≈ 1.0 
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RBER, UBER, and the Magic of Correction 

• Post-correction bit error rate is called UBER, short for uncorrected bit error 
rate.  UBER is the industry-standard metric for evaluating error correction 
performance in Flash memory. 
 

• If we know the distribution of possible errors within a code word, i.e. the pmf, 
then calculating the uncorrected bit error rate is very straightforward. 
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• Note that the summation can start at t+1, since all other summation terms 
below t+1 are 0 for an error correction scheme with strength t. 
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Tradeoffs and Numerical Examples 

Code Length 
 

8192 
 

8192 
 

8192 
 

8192 
 

8192 
 

8192 
 

8192 

RBER 
 

2.00e-3 
 

2.00e-3 
 

2.00e-3 
 

2.00e-3 
 

2.00e-3 
 

2.00e-3 
 

2.00e-3 

Strength (t) 
 

37 
 

38 
 

39 
 

40 
 

41 
 

42 
 

43 

Code Rate 
 

0.937 
 

0.935 
 

0.933 
 

0.932 
 

0.930 
 

0.928 
 

0.927 

UBER 
 

1.612e-08 
 

6.808e-09 
 

2.805e-09 
 

1.128e-09 
 

4.426e-10 
 

1.697e-10 
 

6.362e-11 

↓ 250x 

Correction strength has a significant impact on UBER.  As 
correction strength varies from 37 to 43, at an RBER of 2.00e-3, 
UBER decreases by a factor of more than 250. 
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Tradeoffs and Numerical Examples 

Code Length 
 

8192 
 

8192 
 

8192 
 

8192 
 

8192 
 

8192 
 

8192 

RBER 
 

1.25e-3 
 

1.25e-3 
 

1.25e-3 
 

1.25e-3 
 

1.25e-3 
 

1.25e-3 
 

1.25e-3 

Strength (t) 
 

37 
 

38 
 

39 
 

40 
 

41 
 

42 
 

43 

Code Rate 
 

0.937 
 

0.935 
 

0.933 
 

0.932 
 

0.930 
 

0.928 
 

0.927 

UBER 
 

1.016e-13 
 

2.705e-14 
 

7.012e-15 
 

1.775e-15 
 

4.383e-16 
 

1.057e-16 
 

2.489e-17 

↓ 4000x 

RBER also has a significant impact on UBER.  As correction 
strength varies from 37 to 43, at an RBER of 1.25e-3, UBER 
decreases by a factor of more than 4000! 
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Tradeoffs and Numerical Examples 

Code Length 
 

8192 
 

8192 
 

8192 
 

8192 
 

8192 
 

8192 
 

8192 

RBER 
 

2.75e-3 
 

2.50e-3 
 

2.25e-3 
 

2.00e-3 
 

1.75e-3 
 

1.50e-3 
 

1.25e-3 

Strength (t) 
 

40 
 

40 
 

40 
 

40 
 

40 
 

40 
 

40 

Code Rate 
 

0.932 
 

0.932 
 

0.932 
 

0.932 
 

0.932 
 

0.932 
 

0.932 

UBER 
 

1.503e-06 
 

2.116e-07 
 

1.987e-08 
 

1.128e-09 
 

3.373e-11 
 

4.350e-13 
 

1.775e-15 

↓ 840,000,000x 

If we fix correction strength at 40, and vary RBER from 2.75e-3 to 
1.25e-3, UBER decreases by a factor of more than 840,000,000! 
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Tradeoffs and Numerical Examples 

• So far, we have focused on evaluation of a correction scheme using 
a fixed code word size. 
 

• What if wish to change the length of the code word? 
 

• Shorter code words are generally less efficient, but require less 
processing resources and deliver lower read latency in an absolute 
sense. 
 

• Longer code words are generally more efficient, but require more 
processing resources and deliver higher latency in an absolute 
sense. 
 

• The key is to choose a correction strength that delivers the same or 
lower UBER. 
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Tradeoffs and Numerical Examples 

RBER 
 

1.25e-3 
 

1.50e-3 
 

1.75e-3 
 

2.00e-3 
 

2.25e-3 
 

2.50e-3 
 

2.75e-3 

length = 4096 
strength:UBER 

 
29 : 3.503e-16 

 

28 : 1.499e-13 
 

27 : 1.964e-11 
 

26 : 1.052e-09 
 

26 : 9.624e-09 
 

25 : 1.645e-07 
 

25 : 7.519e-07 

length = 8192 
strength:UBER 

 
40 : 1.775e-15 

 

40 : 4.350e-13 
 

40 : 3.373e-11 
 

40 : 1.128e-09 
 

40 : 1.987e-08 
 

40 : 2.116e-07 
 

40 : 1.503e-06 

length = 16384 
strength:UBER 

 
60 : 1.308e-15 

 

62 : 2.567e-13 
 

64 : 1.571e-11 
 

65 : 8.621e-10 
 

67 : 1.151e-08 
 

68 : 1.676e-07 
 

69 : 1.480e-06 

Correction strength for a shorter or longer codeword must be chosen to 
meet required UBER.  Given a fixed correction strength of 40 over 8192 
bits, what strength is required over 4K or 16K to achieve the same 
UBER? 
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Tradeoffs and Numerical Examples 

• Understanding the performance of a particular codeword length and 
correction strength requires us to calculate UBER.  This requires 
knowledge of RBER. 
 

• Unfortunately, Flash device manufacturers do not generally specify RBER! 
 

• More importantly, RBER varies with Flash wear, temperature, and a 
variety of other factors that are often difficult to control, let alone predict. 
 

• For these reasons, as well as others, it is far easier to simply do what the 
manufacturer recommends. 
 

• Unfortunately, this is not going to satisfy enterprise customers, who 
demand to know the performance and expected lifetimes of their storage 
systems. 
 

• It is also not going to work in a competitive industry characterized by 
“pushing the envelope”. 
 

• We simply need to know more…  We need to dig deeper! 
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IBM Flash Characterization Platform 
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Characterization / Analysis 

• As one might expect, as Flash cells are used (e.g. programmed and 
erased) their reliability worsens and the probability of reading a bit 
incorrectly (RBER) increases 
 

• Extreme P/E cycle conditions lead to an RBER that exceed 1e-2 
 

• If we really want to “push the envelope” then we must be prepared to deal 
with reading 1 in every 100 bits incorrectly!  
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Characterization / Analysis 

• RBER is not completely determined by P/E cycles  
 
• It has been established in the literature that RBER can vary across blocks 

(two blocks subjected to the same number of P/E cycles may have completely 
different RBER)  
 

• RBER can even vary within a block (from page to page) as shown below: 
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Characterization / Analysis 

RBER 
 

0.01 
 

0.01 
 

0.01 
 

0.01 
 

0.01 
 

Strength (t) 
 

157 
 

267 
 

469 
 

852 
 

1585 
 

Code Rate 
 

0.732 
 

0.756 
 

0.771 
 

0.779 
 

0.782 
 

UBER 
 

8.210e-16 
 

6.627e-16 
 

9.614e-16 
 

8.691e-16 
 

8.955e-16 
 

• How can we achieve operational UBER < 1e-15 given RBER = 1e-2 using 
BCH codes? 
 

• For a code length of 8192 bits we would need correction strength t=157. This 
corresponds to a code rate of 0.73 which is very low for storage applications 

 
• To become more efficient we can try increasing the BCH code length: 

 
• Higher code rate is achieved (0.73  0.78)  
• BUT: the implementation complexity does not scale well (t=1585 ?!) 
 

• A different approach is required 

Code length 
 

8192 
 

16384 
 

32768 
 

65536 
 

131072 
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