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Concept of Rewriting

TLC: 8 Levels
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Concept of Rewriting

Advantage of rewriting: Longevity of memory.

Why?

Delay block erasures.

Trade instantaneous capacity for sum-capacity over the
memory’s lifetime.

Rewriting can be applied to any number of levels, including SLC.
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Review: Basic Problem for Write-Once Memory

Let us recall the basic question for Write-Once Memory (WOM):

Suppose you have n binary cells. Every cell can change its
value only from 0 to 1, not from 1 to 0.
How can you write data, and then rewrite, rewrite, rewrite · · ·
the data?
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Review: Write Once Memory (WOM) [1]

Example: Store 2 bits in 3 SLCs. Write the 2-bit data twice.

000

010100 001

101110 011

111

00

10 11 01

00

1001 11

Data:

Cell Levels:

[1] R. L. Rivest and A. Shamir, “How to reuse a ‘write-once’ memory,” in Information and Control, vol. 55, pp.

1-19, 1982.
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Review: Write Once Memory (WOM)

Example: Store 2 bits in 3 SLCs. Write the 2-bit data twice.

000

010100 001

101110 011

111

00

10 11 01

00

1001 11

Data:

Cell Levels:

1st write: 10
2nd write: 01

Sum rate: 2
3 + 2

3 = 1.33
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Review: Write-Once Memory Code

This kind of code is called Write-Once Memory (WOM) code.

It is potentially a powerful technology for Flash Memories.

11 / 64



Joint rewriting and error correction scheme
Rank Modulation

Summary and Future Directions

Review: Capacity of WOM [1][2]

For WOM of q-level cells and t rewrites, the capacity (maximum
achievable sum rate) is

log2

(
t + q − 1

q − 1

)
.

bits per cell.

[1] C. Heegard, On the capacity of permanent memory, in IEEE Trans. Information Theory, vol. IT-31, pp. 34-42,
1985.
[2] F. Fu and A. J. Han Vinck, On the capacity of generalized write-once memory with state transitions described

by an arbitrary directed acyclic graph, in IEEE Trans. Information Theory, vol. 45, no. 1, pp. 308-313, 1999.
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Recent Developments

How to design good WOM codes?

Two capacity-achieving codes were published in 2012 – the same
year!:

A. Shpilka, Capacity achieving multiwrite WOM codes, 2012.

D. Burshtein and A. Strugatski, Polar write once memory
codes, 2012.
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Two Parameters: α and ε

For a t-write WOM code, consider one of its t writes.

There are two important parameters for this write:

α: The fraction of cells that are 0 before this write.

ε: For the cells of level 0 before this write, ε is the fraction of
them that are changed to 1 in this write.

For t-write WOM codes, the optimal values of α and ε are known
for each of the t writes.
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Polar WOM Code [1]

Idea of Burshtein and Strugatski: See a write as the decoding of a
polar code:

See the cells’ state BEFORE the write as a noisy Polar
codeword.

See the cells’ state AFTER the write as the correct (i.e.,
error-free) Polar codeword.

More precisely, they see the write as lossy data compression, using
the method presented by Korada and Urbanke [2].

[1] D. Burshtein and A. Strugatski, Polar Write Once Memory Codes, in Proc. ISIT, 2012.

[2] S. Korada and R. Urbanke, Polar Codes Are Optimal For Lossy Source Coding, in IEEE Transactions on

Information Theory, vol. 56, no. 4, pp. 1751–1768, 2010.
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Polar WOM Code

Smart Idea by Burshtein and Strugatski:

1 Add dither to cell:

Let s ∈ {0, 1} be the level of a cell.
Let g ∈ {0, 1} be a pseudo-random number known to the
encoder and decoder.
Let v = s ⊕ g be called the value of the cell.

2 Build a test channel for the write, which we shall call the WOM channel:

require s�i,j ≥ si,j. Let ci,j ∈ {0, 1} denote the level of the i-th
cell at any time after the j-th write and before the (j + 1)-
th write, when reading of the message Mj can happen. The
error ci,j ⊕ s�i,j ∈ {0, 1} is the error in the i-th cell caused by
the noise channel BSC(p). (Here ⊕ is an XOR function.) For
j = 1, 2, · · · , t, the encoding function

Ej : {0, 1}N × {0, 1}Mj → {0, 1}N

changes the cell levels from sj = (s1,j, s2,j, · · · , sN,j) to
s�j = (s�1,j, s�2,j, · · · , s�N,j) given the initial cell state sj and
the message to store Mj. (Namely, Ej(sj, Mj) = s�j.) When
the reading of Mj happens, the decoding function

Dj : {0, 1}N → {0, 1}Mj

recovers the message Mj given the noisy cell state cj =
(c1,j, c2,j, · · · , cN,j). (Namely, Dj(cj) = Mj.)

For j = 1, · · · , t, Rj =
Mj
N is called the rate of the j-

th write. Rsum = ∑t
j=1 Rj is called the sum-rate of the code.

When there is no noise, the maximum sum-rate of WOM code
is known to be log2(t + 1); however, for noisy WOM, the
maximum sum-rate is still largely unknown [6].

B. Polar codes

We give a short introduction to polar codes due to its
relevance to our code construction. A polar code is a linear
block error correcting code proposed by Arıkan [1]. It is the
first known code with an explicit construction that provably
achieves the channel capacity of symmetric binary-input dis-
crete memoryless channels (B-DMC). The encoder of a polar
code transforms N input bits u = (u1, u2, · · · , uN) to N
codeword bits x = (x1, x2, · · · , xN) through a linear trans-

formation. (In [1], x = uG⊗m
2 where G2 =

�
1 0
1 1

�
, and

G⊗m
2 is the m-th Kronecker product of G2.) The N codeword

bits (x1, x2, · · · , xN) are transmitted through N independent
copies of a B-DMC. For decoding, N transformed binary
input channels {W(1)

N , W(2)
N , · · · , W(N)

N } can be synthesized
for u1, u2, · · · , uN , respectively. The channels are polarized
such that for large N, the fraction of indices i for which
I(W(i)

N ) is nearly 1 approaches the capacity of the B-DMC [1],
while the values of I(W(i)

N ) for the remaining indices i are
nearly 0. The latter set of indices are called the frozen set.
For error correction, the ui’s with i in the frozen set take
fixed values, and the other ui’s are used as information bits.
A successive cancellation (SC) decoding algorithm achieves
diminishing block error probability as N increases.

Polar code can also be used for optimal lossy source
coding [8], which has various applications. In particular, in [3],
the idea was used to build capacity achieving WOM codes.

Our code analysis uses the concept of upgrading and de-
grading channels, defined based on frozen sets. As in [13],
a channel W � : X → Z is called "degraded with respect to
a channel W : X → Y” if an equivalent channel of W � can
be constructed by concatenating W with an additional channel

Q : Y → Z, where the inputs of Q are linked with the outputs
of W. That is,

W �(z|x) = ∑
y∈Y

W(y|x)Q(z|y)

We denote it by W � � W. Equivalently, the channel W is
called “an upgrade with respect to W �”, denoted by W � W �.

III. CODE CONSTRUCTION

In this section, we introduce our code construction that
combines rewriting with error correction.

A. Basic code construction with a nested structure

1) Basic concepts: First, let us consider a single rewrite
step (namely, one of the t writes). Let s = (s1, s2, · · · , sN) ∈
{0, 1}N and s� = (s�1, s�2, · · · , s�N) ∈ {0, 1}N denote the cell
levels right before and after this rewrite, respectively. Let g =
(g1, g2, · · · , gn) be a pseudo-random bit sequence with i.i.d.
bits that are uniformly distributed. The value of g is known
to both the encoder and the decoder, and g is called a dither.

For i = 1, 2, · · · , N, let vi = si ⊕ gi ∈ {0, 1} and v�i =
s�i ⊕ gi ∈ {0, 1} be the value of the i-th cell before and after
the rewrite, respectively. As in [3], we build the WOM channel
in Figure 1 for this rewrite, denoted by WOM(α, �). Here

0

1

(1, 0)

(1, 1)

(0, 0)

(0, 1)

1 − α

1 − α

α(1 − �)

α(1 − �)

α�

α�
v� (s, v)

Fig. 1. The WOM channel WOM(α, �).

α ∈ [0, 1] and � ∈ [0, 1
2 ] are given parameters, with α =

1− ∑N
i=1

si
N representing the fraction of cells at level 0 before

the rewrite, and � =
∑N

i=1 s�i−si

N−∑N
i=1 si

representing the fraction of
cells that are changed from level 0 to level 1 by the rewrite.
Let FWOM(α,�) ⊆ {1, 2, · · · , N} be the frozen set of the polar
code corresponding to this channel WOM(α, �). It is known

that limN→∞
|FWOM(α,�) |

N = α H(�). [3]
For the noise channel BSC(p), let FBSC(p) ⊆ {1, 2, · · · , N}

be the frozen set of the polar code corresponding to the channel
BSC(p). It is known that limN→∞

|FBSC(p) |
|N| = H(p).

In this subsection, we assume FBSC(p) ⊆ FWOM(α,�). It is
as illustrated in Figure 2(a). In this case, the code has a nice
nested structure: for any message M ∈ {0, 1}M, the set of
cell values VM ⊆ {0, 1}N that represent the message M is
a linear subspace of a linear error correcting code (ECC) for
the noise channel BSC(p), and {VM|M ∈ {0, 1}M} form a

(s,v): level and value 
of a cell before the write.

v': value of a cell 
after the write.
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Polar WOM Code: Process of A Write: Decode
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For Rewriting to be used in flash memories, it is CRITICAL to
combine it with Error-Correcting Codes.
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Some Codes for Joint Rewriting and Error Correction

Previous results are for correcting a few (up to 3) errors:

G. Zemor and G. D. Cohen, Error-Correcting WOM-Codes, in
IEEE Transactions on Information Theory, vol. 37, no. 3, pp.
730–734, 1991.

E. Yaakobi, P. Siegel, A. Vardy, and J. Wolf, Multiple
Error-Correcting WOM-Codes, in IEEE Transactions on
Information Theory, vol. 58, no. 4, pp. 2220–2230, 2012.
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New Code for Joint Rewriting and Error Correction

We now present a joint coding scheme for rewriting and error
correction, which can correct a substantial number of errors and
supports any number of rewrites.

A. Jiang, Y. Li, E. En Gad, M. Langberg, and J. Bruck, Joint
Rewriting and Error Correction in Write-Once Memories, 2013.
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Model of Rewriting and Noise

1st 
write BSC(p) 2nd 

write BSC(p) t-th
write BSC(p)
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Two Channels

Consider one write.

Consider two channels:

1 WOM channel. Let its frozen set be FWOM(α,ε).

2 BSC channel. Let its frozen set be FBSC(p).
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General Coding Scheme
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General Coding Scheme
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0's

Use additional
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Rate of the Code

Analyze the rate of a single write step:

Let N →∞ be the size of the polar code.
The size of FWOM(α,ε) (the frozen set for the WOM channel)
is αH(ε)N.
The size of FBSC(p) (the frozen set for the BSC) is H(p)N.
The number of bits in the written data is
|FWOM(α,ε) − FBSC(p)|.
The number of additional cells we use to store the value in
FBSC(p) − FWOM(α,ε) is

|FBSC(p)−FWOM(α,ε)|
1−H(p) .

For i = 1, 2, · · · , t, let Mi be the number of bits written in the
ith write, and let Nadditional ,i be the number of additional cells
we use to store the value in FBSC(p) − FWOM(α,ε) in the ith
write. Then the sum-rate is

Rsum =

∑t
i=1 Mi

N +
∑t

i=1 Nadditional ,i

.
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When is FBSC (p) a subset of FWOM(α,ε)?

V. EXTENSIONS

We now consider more general noise models. For simplicity,
we discuss it for an erasure channel. But it can be easily
extended to other noise models. Let the noise be a BEC with
erasure probability p, denoted by BEC(p). After a rewrite,
noise appears in some cell levels (both level 0 and level 1)
and changes them to erasures. An erasure represents a noisy
cell level between 0 and 1. We handle erasures this way: before
a rewrite, we first increase all the erased cell levels to 1, and
then perform rewriting as before.

Note that although the noise for cell levels is BEC(p),
when rewriting happens, the equivalent noise channel for the
cell value v = s ⊕ g is a BSC( p

2 ), because all the erased
cell levels have been pushed to level 1, and dither has a
uniform distribution. Therefore, the code construction and its
performance analysis can be carried out the same way as
before, except that we replace p by p

2 .
The code can also be extended to multi-level cells (MLC),

by using q-ary polar codes. We skip the details for simplicity.

VI. EXPERIMENTAL RESULTS

In this section, we study the achievable rates of our error
correcting WOM code, using polar codes of finite lengths. In
the following, we assume the noise channel is BSC(p), and
search for good parameters �1, �2, · · · , �t that achieve high
sum-rate for rewriting. We also study when the code can have
a nested structure, which simplifies the code construction.

A. Finding BSCs satisfying FBSC(p) ⊆ FWOM(α,�)

The first question we endeavor to answer is when BSC(p)
satisfies the condition FBSC(p) ⊆ FWOM(α,�), which leads to
an elegant nested code structure. We search for the answer
experimentally. Let N = 8192. Let the polar codes be
constructed using the method in [13]. To obtain the frozen sets,
we let |FWOM(α,�)| = N(α H(�) − ∆R), where ∆R = 0.025
is a rate loss we considered for the polar code of the WOM
channel [3]; and let FBSC(p) be chosen with the target block
error rate 10−5.

The results are shown in Figure 8. The four curves corre-
spond to α = 0.4, 0.6, 0.8, and 1.0, respectively. The x-axis
is �, and the y-axis is the maximum value of p we found that
satisfies FBSC(p) ⊆ FWOM(α,�). Clearly, the maximum value
of p increases with both α and �. And it has nontrivial values
(namely, it is comparable to or higher than the typical error
probabilities in memories).

B. Achievable sum-rates for nested code
We search for the achievable sum-rates of codes with

a nested structure, namely, when the condition FBSC(p) ⊆
FWOM(αj−1,�j)

is satisfied for all j = 1, 2, · · · , t. Given p, we
search for �1, �2, · · · , �t that maximize the sum-rate Rsum.

We show the results for t-write error-correcting WOM
codes—for t = 2, 3, 4, 5—in Figure 9. (In the experiments,
we let N = 8192, ∆R = 0.025, and the target block error rate
be 10−5.) The x-axis is p, and the y-axis is the maximum sum-
rate found in our algorithmic search. We see that the achievable
sum-rate increases with the number of rewrites t.
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Fig. 8. The maximum value of p found for which FBSC(p) ⊆ FWOM(α,�).
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Fig. 9. Sum-rates for different t obtained in experimental search using code
length N = 8192, when FBSC(p) ⊆ FWOM(α,�).

C. Achievable sum-rates for general code

We now search for the achievable sum-rates of the gen-
eral code, when FBSC(p) is not necessarily a subset of
FWOM(αj−1,�j)

. When p is given, the general code can search
a larger solution space for �1, �2, · · · , �t than the nested-code
case, and therefore achieve higher sum-rates. However, for
relatively small p (e.g. p < 0.016), the gain in rate obtained
in the experiments is quite small. This means the nested
code is already performing well for this parameter range. For
simplicity, we skip the details.

Note that the lower bound to sum-rate Rsum in Figure 6
is actually higher than the rates we have found through
experiments by now. This is because the lower bound is for
N → ∞, while the codes in our experiments are still short so
far and consider the rate loss ∆R. Better rates can be expected
as we increase the code length and further improve our search
algorithm due to the results indicated by the lower bound.
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Theoretical Analysis

It is interesting to know how much FWOM(α,ε) and FBSC(p)

intersects.
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Degrading WOM Channel to BSC

IV. CODE ANALYSIS FOR BSC

In this section, we prove the correctness of the above code
construction, and analyze its performance.

A. Correctness of the code

We first prove the correctness of our code. First, the encoder
in Algorithm 1 works similarly to the WOM code encoder
in [3], with an exception that the bits in FWOM(α,�) are not all
occupied by the message M; instead, the bits in its subset
FWOM(α,�) ∩ FBSC(p) are set to be constant values: all 0s.
Therefore, it successfully rewrites data in the same way as
the code in [3]. Next, the decoder in Algorithm 2 recovers the
cell values from noise in the same way as the standard polar
ECC. Then, the stored message M is extracted from it.

One important thing to note is that although the physical
noise acts on the cell levels s = (s1, s2, · · · , sN), the error cor-
recting code we use in our construction is actually for the cell
values v = (v1, v2, · · · , vn) = (s1 ⊕ g1, s2 ⊕ g2, · · · , sN ⊕
gN). However, the pseudo-random dither g has independent
and uniformly distributed elements; so when the noise channel
for s is BSC(p), the corresponding noise channel for v is also
BSC(p).

B. The size of FWOM(α,�) ∩ FBSC(p)

We have seen that if FBSC(p) ⊆ FWOM(α,�), the code has
a very interesting nested structure. In general, it is also inter-
esting to understand how large the intersection FWOM(α,�) ∩
FBSC(p) can be. For convenience of presentation, we consider
one rewrite as in Section III-A, where the parameters are α
and � (instead of αj−1, �j).

Lemma 1. When H(p) ≤ α H(�), limN→∞
|FBSC(p) |

N ≤
limN→∞

|FWOM(α,�) |
N .

Proof: limN→∞
|FBSC(p) |

N = H(p) ≤ α H(�) =

limN→∞
|FWOM(α,�) |

N .

Lemma 2. When p ≤ α�,

FWOM(α, p
α ) ⊆

�
FBSC(p) ∩ FWOM(α,�)

�
,

and
�

FWOM(α,�) ∪ FBSC(p)

�
⊆ FBSC(α�).

Proof: (1) In Figure 3, by setting �∗ = p
α , we see that

BSC(p) � WOM(α, p
α ). Therefore FWOM(α, p

α ) ⊆ FBSC(p).
(2) In Figure 4, we can see that WOM(α, �) �

WOM(α, p
α ). Therefore, FWOM(α, p

α ) ⊆ FWOM(α,�).
(3) In Figure 3, by setting �∗ = �, we see that BSC(α�) �

WOM(α, �). Therefore FWOM(α,�) ⊆ FBSC(α�).
(4) Since p ≤ α�, clearly BSC(α�) � BSC(p). Therefore

FBSC(p) ⊆ FBSC(α�).
We illustrate the meaning of Lemma 2 in Figure 5.
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Fig. 3. Degrading the channel WOM(α, �∗) to BSC(α�∗). The two channels
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Lemma 3. When p ≤ α�, limN→∞
|FWOM(α,�)∩FBSC(p) |

N ≥
limN→∞

|F
WOM(α, p

α )
|

N = α H( p
α ).

Lemma 4. When p ≤ α�, limN→∞
|FWOM(α,�)∩FBSC(p) |

N ≥
limN→∞

|FWOM(α,�) |+|FBSC(p) |−|FBSC(α�) |
N = α H(�) + H(p) −

H(α�).

Proof: |FWOM(α,�) ∩ FBSC(p)| = |FWOM(α,�)| +
|FBSC(p)| − |FWOM(α,�) ∪ FBSC(p)| ≥ |FWOM(α,�)| +
|FBSC(p)| − |FBSC(α�)| (by Lemma 2).

C. Lower bound to sum-rate

We now analyze the sum-rate of our general code construc-

tion as N → ∞. Let xj �
|FWOM(αj−1,�j)

∩FBSC(p) |
|FBSC(p) | ≤ 1. For

j = 1, 2, · · · , t, the number of bits written in the j-th rewrite

{1, 2, · · · , N}

FWOM(α,�)

FBSC(α�)

FBSC(p)

FWOM(α, p
α )

Fig. 5. The frozen sets for channels BSC(p), WOM(α, �), WOM(α, p
α )

and BSC(α�). Here p ≤ α�.
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IV. CODE ANALYSIS FOR BSC

In this section, we prove the correctness of the above code
construction, and analyze its performance.

A. Correctness of the code

We first prove the correctness of our code. First, the encoder
in Algorithm 1 works similarly to the WOM code encoder
in [3], with an exception that the bits in FWOM(α,�) are not all
occupied by the message M; instead, the bits in its subset
FWOM(α,�) ∩ FBSC(p) are set to be constant values: all 0s.
Therefore, it successfully rewrites data in the same way as
the code in [3]. Next, the decoder in Algorithm 2 recovers the
cell values from noise in the same way as the standard polar
ECC. Then, the stored message M is extracted from it.

One important thing to note is that although the physical
noise acts on the cell levels s = (s1, s2, · · · , sN), the error cor-
recting code we use in our construction is actually for the cell
values v = (v1, v2, · · · , vn) = (s1 ⊕ g1, s2 ⊕ g2, · · · , sN ⊕
gN). However, the pseudo-random dither g has independent
and uniformly distributed elements; so when the noise channel
for s is BSC(p), the corresponding noise channel for v is also
BSC(p).

B. The size of FWOM(α,�) ∩ FBSC(p)

We have seen that if FBSC(p) ⊆ FWOM(α,�), the code has
a very interesting nested structure. In general, it is also inter-
esting to understand how large the intersection FWOM(α,�) ∩
FBSC(p) can be. For convenience of presentation, we consider
one rewrite as in Section III-A, where the parameters are α
and � (instead of αj−1, �j).

Lemma 1. When H(p) ≤ α H(�), limN→∞
|FBSC(p) |

N ≤
limN→∞

|FWOM(α,�) |
N .

Proof: limN→∞
|FBSC(p) |

N = H(p) ≤ α H(�) =

limN→∞
|FWOM(α,�) |

N .

Lemma 2. When p ≤ α�,

FWOM(α, p
α ) ⊆

�
FBSC(p) ∩ FWOM(α,�)

�
,

and
�

FWOM(α,�) ∪ FBSC(p)

�
⊆ FBSC(α�).

Proof: (1) In Figure 3, by setting �∗ = p
α , we see that

BSC(p) � WOM(α, p
α ). Therefore FWOM(α, p

α ) ⊆ FBSC(p).
(2) In Figure 4, we can see that WOM(α, �) �

WOM(α, p
α ). Therefore, FWOM(α, p

α ) ⊆ FWOM(α,�).
(3) In Figure 3, by setting �∗ = �, we see that BSC(α�) �

WOM(α, �). Therefore FWOM(α,�) ⊆ FBSC(α�).
(4) Since p ≤ α�, clearly BSC(α�) � BSC(p). Therefore

FBSC(p) ⊆ FBSC(α�).
We illustrate the meaning of Lemma 2 in Figure 5.
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H(α�).

Proof: |FWOM(α,�) ∩ FBSC(p)| = |FWOM(α,�)| +
|FBSC(p)| − |FWOM(α,�) ∪ FBSC(p)| ≥ |FWOM(α,�)| +
|FBSC(p)| − |FBSC(α�)| (by Lemma 2).

C. Lower bound to sum-rate

We now analyze the sum-rate of our general code construc-

tion as N → ∞. Let xj �
|FWOM(αj−1,�j)

∩FBSC(p) |
|FBSC(p) | ≤ 1. For

j = 1, 2, · · · , t, the number of bits written in the j-th rewrite
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IV. CODE ANALYSIS FOR BSC

In this section, we prove the correctness of the above code
construction, and analyze its performance.

A. Correctness of the code

We first prove the correctness of our code. First, the encoder
in Algorithm 1 works similarly to the WOM code encoder
in [3], with an exception that the bits in FWOM(α,�) are not all
occupied by the message M; instead, the bits in its subset
FWOM(α,�) ∩ FBSC(p) are set to be constant values: all 0s.
Therefore, it successfully rewrites data in the same way as
the code in [3]. Next, the decoder in Algorithm 2 recovers the
cell values from noise in the same way as the standard polar
ECC. Then, the stored message M is extracted from it.

One important thing to note is that although the physical
noise acts on the cell levels s = (s1, s2, · · · , sN), the error cor-
recting code we use in our construction is actually for the cell
values v = (v1, v2, · · · , vn) = (s1 ⊕ g1, s2 ⊕ g2, · · · , sN ⊕
gN). However, the pseudo-random dither g has independent
and uniformly distributed elements; so when the noise channel
for s is BSC(p), the corresponding noise channel for v is also
BSC(p).

B. The size of FWOM(α,�) ∩ FBSC(p)

We have seen that if FBSC(p) ⊆ FWOM(α,�), the code has
a very interesting nested structure. In general, it is also inter-
esting to understand how large the intersection FWOM(α,�) ∩
FBSC(p) can be. For convenience of presentation, we consider
one rewrite as in Section III-A, where the parameters are α
and � (instead of αj−1, �j).
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Proof: limN→∞
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,

and
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FWOM(α,�) ∪ FBSC(p)

�
⊆ FBSC(α�).

Proof: (1) In Figure 3, by setting �∗ = p
α , we see that

BSC(p) � WOM(α, p
α ). Therefore FWOM(α, p

α ) ⊆ FBSC(p).
(2) In Figure 4, we can see that WOM(α, �) �

WOM(α, p
α ). Therefore, FWOM(α, p

α ) ⊆ FWOM(α,�).
(3) In Figure 3, by setting �∗ = �, we see that BSC(α�) �

WOM(α, �). Therefore FWOM(α,�) ⊆ FBSC(α�).
(4) Since p ≤ α�, clearly BSC(α�) � BSC(p). Therefore
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We illustrate the meaning of Lemma 2 in Figure 5.
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Lemma 3. When p ≤ α�, limN→∞
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α ).

Lemma 4. When p ≤ α�, limN→∞
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N ≥
limN→∞

|FWOM(α,�) |+|FBSC(p) |−|FBSC(α�) |
N = α H(�) + H(p) −

H(α�).

Proof: |FWOM(α,�) ∩ FBSC(p)| = |FWOM(α,�)| +
|FBSC(p)| − |FWOM(α,�) ∪ FBSC(p)| ≥ |FWOM(α,�)| +
|FBSC(p)| − |FBSC(α�)| (by Lemma 2).

C. Lower bound to sum-rate

We now analyze the sum-rate of our general code construc-

tion as N → ∞. Let xj �
|FWOM(αj−1,�j)

∩FBSC(p) |
|FBSC(p) | ≤ 1. For

j = 1, 2, · · · , t, the number of bits written in the j-th rewrite

{1, 2, · · · , N}

FWOM(α,�)
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Fig. 5. The frozen sets for channels BSC(p), WOM(α, �), WOM(α, p
α )

and BSC(α�). Here p ≤ α�.
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IV. CODE ANALYSIS FOR BSC

In this section, we prove the correctness of the above code
construction, and analyze its performance.

A. Correctness of the code

We first prove the correctness of our code. First, the encoder
in Algorithm 1 works similarly to the WOM code encoder
in [3], with an exception that the bits in FWOM(α,�) are not all
occupied by the message M; instead, the bits in its subset
FWOM(α,�) ∩ FBSC(p) are set to be constant values: all 0s.
Therefore, it successfully rewrites data in the same way as
the code in [3]. Next, the decoder in Algorithm 2 recovers the
cell values from noise in the same way as the standard polar
ECC. Then, the stored message M is extracted from it.

One important thing to note is that although the physical
noise acts on the cell levels s = (s1, s2, · · · , sN), the error cor-
recting code we use in our construction is actually for the cell
values v = (v1, v2, · · · , vn) = (s1 ⊕ g1, s2 ⊕ g2, · · · , sN ⊕
gN). However, the pseudo-random dither g has independent
and uniformly distributed elements; so when the noise channel
for s is BSC(p), the corresponding noise channel for v is also
BSC(p).

B. The size of FWOM(α,�) ∩ FBSC(p)

We have seen that if FBSC(p) ⊆ FWOM(α,�), the code has
a very interesting nested structure. In general, it is also inter-
esting to understand how large the intersection FWOM(α,�) ∩
FBSC(p) can be. For convenience of presentation, we consider
one rewrite as in Section III-A, where the parameters are α
and � (instead of αj−1, �j).

Lemma 1. When H(p) ≤ α H(�), limN→∞
|FBSC(p) |

N ≤
limN→∞

|FWOM(α,�) |
N .

Proof: limN→∞
|FBSC(p) |

N = H(p) ≤ α H(�) =

limN→∞
|FWOM(α,�) |

N .

Lemma 2. When p ≤ α�,
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�
FBSC(p) ∩ FWOM(α,�)

�
,

and
�

FWOM(α,�) ∪ FBSC(p)

�
⊆ FBSC(α�).

Proof: (1) In Figure 3, by setting �∗ = p
α , we see that

BSC(p) � WOM(α, p
α ). Therefore FWOM(α, p

α ) ⊆ FBSC(p).
(2) In Figure 4, we can see that WOM(α, �) �

WOM(α, p
α ). Therefore, FWOM(α, p

α ) ⊆ FWOM(α,�).
(3) In Figure 3, by setting �∗ = �, we see that BSC(α�) �

WOM(α, �). Therefore FWOM(α,�) ⊆ FBSC(α�).
(4) Since p ≤ α�, clearly BSC(α�) � BSC(p). Therefore

FBSC(p) ⊆ FBSC(α�).
We illustrate the meaning of Lemma 2 in Figure 5.
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|FWOM(α,�) |+|FBSC(p) |−|FBSC(α�) |
N = α H(�) + H(p) −

H(α�).

Proof: |FWOM(α,�) ∩ FBSC(p)| = |FWOM(α,�)| +
|FBSC(p)| − |FWOM(α,�) ∪ FBSC(p)| ≥ |FWOM(α,�)| +
|FBSC(p)| − |FBSC(α�)| (by Lemma 2).

C. Lower bound to sum-rate

We now analyze the sum-rate of our general code construc-

tion as N → ∞. Let xj �
|FWOM(αj−1,�j)

∩FBSC(p) |
|FBSC(p) | ≤ 1. For

j = 1, 2, · · · , t, the number of bits written in the j-th rewrite

{1, 2, · · · , N}
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Lower Bound to Achievable Sum-Rate

is

Mj =|FWOM(αj−1,�j)
| − |FWOM(αj−1,�j)

∩ FBSC(p)|
=Nαj−1 H(�j) − xj|FBSC(p)|
=N(αj−1 H(�j) − xj H(p))

and the number of additional cells we use to store the bits in
FBSC(p) − FWOM(αj−1,�j)

is

Nadditional,j =
N H(p)(1 − xj)

1 − H(p)

Therefore, the sum-rate is Rsum � ∑t
j=1 Mj

N+∑t
j=1 Nadditional,j

=
∑t

j=1 αj−1 H(�j) − H(p) ∑t
j=1 xj

1 + H(p)
1−H(p) ∑t

j=1(1 − xj)

=
(1 − H(p)) ∑t

j=1 αj−1 H(�j) − H(p)(1 − H(p)) ∑t
j=1 xj

(1 − H(p) + H(p)t) − H(p) ∑t
j=1 xj

=(1 − H(p)) ·
1

H(p) ∑t
j=1 αj−1 H(�j) − ∑t

j=1 xj

1−H(p)+H(p)t
H(p)

− ∑t
j=1 xj

.

Let γj � max

�
αj−1 H(

p
αj−1

)

H(p)
,

αj−1 H(�j)+H(p)−H(αj−1�j)

H(p)

�
.

Lemma 5. Let 0 < p ≤ αj−1�j. Then xj ≥ γj.

Proof: By Lemma 3, we have

xj =
|FWOM(αj−1,�j)

∩ FBSC(p)|
|FBSC(p)|

≥
|FWOM(αj−1, p

αj−1
)|

|FBSC(p)|
=

αj−1 H( p
αj−1

)

H(p)
.

By Lemma 4, we also have

xj =
|FWOM(αj−1,�j)

∩ FBSC(p)|
|FBSC(p)|

≥
|FWOM(αj−1,�j)

| + |FBSC(p)| − |FBSC(αj−1�j)
|

|FBSC(p)|

=
αj−1 H(�j) + H(p) − H(αj−1�j)

H(p)
.

Theorem 6 Let 0 < p ≤ αj−1�j for j = 1, 2, · · · , t. If
∑t

j=1 αj−1 H(�j) ≥ 1 − H(p) + H(p)t, then the sum-rate
Rsum is lower bounded by

(1 − H(p))
∑t

j=1
�
αj−1 H(�j) − H(p)γj

�

1 − H(p) + H(p)t − H(p) ∑t
j=1 γj

.

If ∑t
j=1 αj−1 H(�j) < 1 − H(p) + H(p)t, and H(p) ≤

αj−1 H(�j) for j = 1, 2, · · · , t, then Rsum is lower bounded
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by �
t

∑
j=1

αj−1 H(�j)

�
− H(p)t.

Proof: If ∑t
j=1 αj−1 H(�j) ≥ 1 − H(p) + H(p)t, the

sum-rate is minimized when xj (j = 1, 2, · · · , t) takes the
minimum value, and we have xj ≥ γj. Otherwise, the sum-
rate is minimized when xj takes the maximum value 1.

We show some numerical results of the lower bound to sum-
rate Rsum in Figure 6, where we let �i = 1

2+t−i . The curve
for p = 0 is the optimal sum-rate for noiseless WOM code.
The other four curves are the lower bounds for noisy WOM
with p = 0.001, p = 0.005, p = 0.010 and p = 0.016,
respectively, given by Theorem 6. Note that it is possible to
further increase the lower bound values by optimizing �i. We
also show in Figure 7 the lower bound to sum-rate when each
step writes the same number of bits.
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Definition of Rank Modulation [1-2]

Rank Modulation:

We use the relative order of cell
levels (instead of their absolute
values) to represent data.

[1] A. Jiang, R. Mateescu, M. Schwartz and J. Bruck, “Rank Modulation for Flash Memories,” in Proc. IEEE
International Symposium on Information Theory (ISIT), pp. 1731–1735, July 2008.

[2] A. Jiang, M. Schwartz and J. Bruck, “Error-Correcting Codes for Rank Modulation,” in Proc. IEEE

International Symposium on Information Theory (ISIT), pp. 1736–1740, July 2008.
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Examples and Extensions of Rank Modulation

Example: Use 2 cells to store 1 bit.

Relative order: (1,2)
Value of data: 0

cell 1 cell 2

Relative order: (2,1)
Value of data: 1

cell 1 cell 2

Example: Use 3 cells to store log2 6 bits. The relative orders
(1, 2, 3), (1, 3, 2), · · · , (3, 2, 1) are mapped to data 0, 1, · · · , 5.

In general, k cells can represent log2(k!) bits.
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Rank Modulation using Multi-set Permutation

Extension: Let each rank have m cells.

Example

Let m = 4. The following is a multi-set permutation

({2, 4, 6, 9}, {1, 5, 10, 12}, {3, 7, 8, 11}) .

1

2

3

4

5

6

7 8

9

10

11

12

Analog level of cells

Rank 1

Rank 2

Rank 3
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Advantages of Rank Modulation

Easy Memory Scrubbing:

Long-term data reliability.

Easier cell programming.
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Joint rewriting and error correction scheme
Rank Modulation

Summary and Future Directions

Error Models and Distance between Permutations

Based on the error model, there are various reasonable choices for
the distance between permutations:

Kendall-tau distance. (To be introduced in detail.)

L∞ distance.

Gaussian noise based distance.

Distance defined based on asymmetric errors or inter-cell
interference.

We should choose the distance appropriately based on the type and
magnitude of errors.
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Summary and Future Directions

Kendall-tau Distance for Rank Modulation ECC [1]

When errors happen, the smallest change in a permutation is the local
exchange of two adjacent numbers in the permutation. That is,

(a1, · · · , ai−1, ai , ai+1︸ ︷︷ ︸
adjacent pair

, ai+2, · · · , an) → (a1, · · · , ai−1, ai+1, ai︸ ︷︷ ︸
adjacent pair

, ai+2, · · · , an)

Example:

(2,1,5,3,4) (2,1,3,5,4)

Original Cell Levels Noisy Cell Levels

We can extend the concept to multiple such “local exchanges” (for larger
errors).
[1] A. Jiang, M. Schwartz and J. Bruck, “Error-Correcting Codes for Rank Modulation,” in Proc. IEEE

International Symposium on Information Theory (ISIT), pp. 1736–1740, July 2008.
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Joint rewriting and error correction scheme
Rank Modulation

Summary and Future Directions

Kendall-tau Distance for Rank Modulation ECC

Definition (Adjacent Transposition)

An adjacent transposition is the local exchange of two neighboring
numbers in a permutation, namely,

(a1, · · · , ai−1, ai , ai+1, ai+2, · · · , an) → (a1, · · · , ai−1, ai+1, ai , ai+2, · · · , an)

Definition (Kendall-tau Distance)

Given two permutations A and B, the Kendall-tau distance between
them, dτ (A,B), is the minimum number of adjacent transpositions
needed to change A into B. (Note that dτ (A,B) = dτ (B,A).)

If the minimum Kendall-tau distance of a code is 2t+1, then it can

correct t adjacent transposition errors.
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Joint rewriting and error correction scheme
Rank Modulation

Summary and Future Directions

Kendall-tau Distance for Rank Modulation ECC

Definition (State Diagram)

Vertices are permutations. There is an undirected edge between
two permutations A,B ∈ Sn iff dτ (A,B) = 1.

Example: The state diagram for n = 3 cells is

(1,2,3)
(2,1,3)

(1,3,2)

(2,3,1)

(3,1,2)
(3,2,1)
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Joint rewriting and error correction scheme
Rank Modulation

Summary and Future Directions

Kendall-tau Distance for Rank Modulation ECC

Example: The state diagram for n = 4 cells is

1234 

2134 

3124 

4123 

3214 

4213 

1324 

2314 

4312 

1423 

2413 

3412 

4321 

3421 

4132 4231 

1432 

2431 2143 

3142 

1243 

3241 

1342 

2341 
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Joint rewriting and error correction scheme
Rank Modulation

Summary and Future Directions

One-Error-Correcting Code

We introduce an error-correcting code of minimum Kendall-tau distance
3, which corrects one Kendall (i.e., adjacent transposition) error.

Definition (Inversion Vector)

Given a permutation (a1, a2, · · · , an), its inversion vector
(x1, x2, · · · , xn−1) ∈ {0, 1} × {0, 1, 2} × · · · × {0, 1, · · · , n − 1} is
determined as follows:

For i = 1, 2, · · · , n− 1, xi is the number of elements in {1, 2, · · · , i}
that are behind i + 1 in the permutation (a1, · · · , an).

Example: The inversion vector for (1, 2, 3, 4) is (0, 0, 0). The inversion for

(4, 3, 2, 1) is (1, 2, 3). The inversion vector for (2, 4, 3, 1) is (1, 1, 2).
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Joint rewriting and error correction scheme
Rank Modulation

Summary and Future Directions

One-Error-Correcting Code [1]

By viewing the inversion vector as coordinates, we embed
permutations in an (n − 1)-dimensional space.

Fact: For any two permutations A,B ∈ Sn, dτ (A,B) is no less
than their L1 distance in the (n − 1)-dimensional space.

Idea: We can construct a code of minimum L1 distance D in the
(n− 1)-dimensional array of size 2× 3× · · · × n. Then it is a code
of Kendall-tau distance at least D for the permutations.

[1] A. Jiang, M. Schwartz and J. Bruck, “Error-Correcting Codes for Rank Modulation,” in Proc. IEEE

International Symposium on Information Theory (ISIT), pp. 1736–1740, July 2008.
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Joint rewriting and error correction scheme
Rank Modulation

Summary and Future Directions

One-Error-Correcting Code

Example: When n = 3 or n = 4, the embedding is as follows. (Only
the solid edges are the edges in the state graph of permutations.)
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!%#&$
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!%#%$

!%#"$

!"#%$

!"#"$%(&('
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&(%('

&('(%

'(%(&
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-../+01234564/783230.1 -../+01234564/783230.1

!"#$%& '9 -../+012345 .: ;4/783230.15# 21+ 47,4++01< 3=4 2+>2*41*? </2;= .: ;4/783230.15# G# 01 3=4 2 × 3 × · · · × n 2//2?# Ln9 @1 3=4 3A. 2//2?5# 3=4 5.B0+
B0145 2/4 3=4 4+<45 01 ,.3= G 21+ Ln# 21+ 3=4 +.334+ B0145 2/4 3=4 4+<45 .1B? 01 Ln9 !2$ -../+012345 .: ;4/783230.15 :./ n = 39 !,$ C7,4++01< G 01 Ln :./
n = 39 !*$ -../+012345 .: ;4/783230.15 :./ n = 49 !+$ C7,4++01< G 01 Ln :./ n = 49

D9 EFGC -FHCI JKH LFMKHI

@3 =25 ,441 5=.A1 3=23 3=4 501<B4N4//./N*.//4*301< *.+4 ,80B3
,? -.153/8*30.1 O =25 2 50P4 A03=01 =2B: .: .;3072B9 Q=4/4 4R053
*.+4 *.153/8*30.15 3=23 *21 ,80B+ B2/<4/ *.+45 01 721? *25459
S4 /4;./3 =4/4 5.74 4//./N*.//4*301< *.+45 ,80B3 8501< 2+
=.* *.153/8*30.15# 21+ *.7;2/4 3=47 A03= 3=4 5;=4/4N;2*T01<
8;;4/ ,.81+ 21+ 3=4 =2B:N.;3072B *.+4U

• S=41 n = 3# 2 501<B4N4//./N*.//4*301< *.+4 A03= 3A.
*.+4A./+5 V [1, 2, 3] 21+ [3, 2, 1] V *21 ,4 4250B? :.81+9
Q=4 5274 *.+4 05 ,80B3 ,? -.153/8*30.1 O# 21+ 3=4 50P4
74435 3=4 5;=4/4N;2*T01< 8;;4/ ,.81+9

• S=41 n = 4# 21 2+ =.* *.153/8*30.1 <414/2345 2 501<B4N
4//./N*.//4*301< *.+4 A03= !W4 *.+4A./+5U [1, 2, 4, 3]#
[3, 1, 4, 2]# [3, 2, 4, 1]# [4, 1, 3, 2] 21+ [4, 2, 3, 1]9 Q=4 *.+4
.83;83 ,? -.153/8*30.1 O =25 50P4 49 Q=4 5;=4/4N;2*T01<
,.81+ 05 69 @3 *21 ,4 5=.A1 3=23 3=4 *.+4 .: 50P4 5 05
.;3072B9

• S=41 n = 5, 6, 7# 21 2+ =.* *.153/8*30.1 <414/2345
501<B4N4//./N*.//4*301< *.+45 A03= %O# X"# 21+ Y&Z *.+4N
A./+5# /45;4*30W4B?9 Q=4 *.+45 .83;83 ,? -.153/8*30.1 O
=2W4 50P4 %)# ZZ# 21+ 'OO# /45;4*30W4B?9 Q=4 5;=4/4N
;2*T01< 8;;4/ ,.81+ 05 &)# %&"# 21+ [&"# /45;4*30W4B?9

• S=41 n = 5, 6, 7# 3=4/4 4R053 3A.N4//./N*.//4*301< *.+45
.: 50P4 Z# &'# 21+ %%"# 3=/44N4//./N*.//4*301< *.+45 .: 50P4
&# %"# ')# 21+ :.8/ 4//./N*.//4*301< *.+45 .: 50P4 &# )# 21+
%)# /45;4*30W4B?9 JBB 3=4 2,.W4 *.+45 =2W4 2 50P4 3=23 05
23 B4253 .14 =2B: .: 3=4 .;3072B 50P49

D@9 -FK-\MI@FK

@1 3=05 ;2;4/# A4 ;/.;.54 2 1.W4B +232 53./2<4 5*=474 :./
"25= 747./045# 3=4 /21TN7.+8B230.1 5*=4749 @3 *21 4B07N
01234 *4BB .W4/N;/.</27701< 21+ 2B5. ,4 7./4 /.,853 3.
25?7743/0* 4//./59 J /21TN7.+8B230.1 5*=474 8545 2 14A
3..B V 3=4 ;4/783230.1 .: *4BB /21T5 V 3. /4;/45413 +2329
-.154]8413B?# 14A 4//./N*.//4*301< 34*=10]845 58032,B4 :./
;4/783230.15 2/4 144+4+9 S4 538+? 3=4 ;/.;4/3045 255.*0234+
A03= 4//./N*.//4*301< /21TN7.+8B230.1 *.+45# 21+ 5=.A 3=23 3=4

;4/783230.1 2+>2*41*? </2;=# A=0*= +45*/0,45 3=4 3.;.B.<? .:
;4/783230.15# 05 2 58,</2;= .: 2 78B30N+074150.12B B0142/ 2/N
/2?9 J5 2 /458B3# 3=4 4//./N*.//4*301< *.+45 :./ /21T 7.+8B230.1
*21 ,4 +450<14+ 8501< \44N743/0* *.+459 S4 ;/45413 2 :270B?
.: .14N4//./N*.//4*301< *.+45 A=.54 50P4 05 A03=01 =2B: .: 3=4
.;3072B 50P4# 21+ 2B5. 5=.A 3=4 /458B35 .: 5.74 .3=4/ !7./4
2+ =.*$ *.+4 *.153/8*30.159
@3 A0BB ,4 0134/45301< 3. 4R341+ 3=4 *.+4 *.153/8*30.1 01 3=05

;2;4/ 3. +450<1 *.+45 3=23 *.//4*3 3A. ./ 7./4 4//./5# ,?
8501< 14A \44N743/0* *.+45 ./ 58032,B4 B2330*4 0134/B42W4/59
Q=4 *.+45 *21 2B5. ,4 07;/.W4+ ,? 2 ,4334/ 830B0P230.1 .:
3=4 5;=4/4 ;2*T01< 01 3=4 ;4/783230.1 2+>2*41*? </2;=# A=0*=
05 5;2/54/ 3=21 3=4 2//2? Ln9 JB34/1230W4 47,4++01< .: 3=4
;4/783230.15# T1.A1 25 !"#$%&'(")#'*# *21 ,4 4R;B./4+ ^'_#
^O_9 !`./ 4R27;B4# 3=4 ;4/783230.1 2+>2*41*? </2;= :./ :.8/
187,4/5 *21 ,4 47,4++4+ 25 2 3/81*234+ .*32=4+/.19$ @1
2++030.1# 03 A0BB ,4 0134/45301< 3. *.7,014 3=4 4//./N*.//4*301<
*.+45 A03= +232 /4A/0301< 5*=4745 25 01 ^Y_9

GC`CGCK-CI
^%_ J9 L21+?.;2+=?2?# a9 I4//21.# 21+ 69 b25B4/# c6/.</27701< 212B.<

*.7;83230.12B 747./? 4B474135 3. 0.2% 2**8/2*? .W4/ 3.5 +4*2+45
8501< 2 ;/4+0*30W4 743=.+#d 01 +#',"")-*./ '0 &(" 1222 1*&"#*3&-'*34
56$!'/-%$ '* 7-#,%-&/ 3*) 56/&"$/# ;;9 &%)OV&%Y%# &""Y9

^&_ 69 -2;;4BB4330# -9 a.BB2# 69 FB0W.# 21+ C9 e21.10# 843/( $"$'#-"/9 fB8A4/
J*2+470* 68,B05=4/5# %XXX9

^'_ 69 a20=2 21+ I9 f9 a8;32# cJ+>2*413 W4/30*45 .1 2 ;4/783.=4+/.1#d 01
519: ;< 9!!4< :3&(<# W.B9 '&# 1.9 &# ;;9 '&'N'&[# %X[[9

^)_ I9 S9 a.B.7, 21+ \9 G9 S4B*=# c64/:4*3 *.+45 01 3=4 \44 743/0* 21+
3=4 ;2*T01< .: ;.B?.701.45#d 519: ;< 9!!4< :3&(<# W.B9 %O# 1.9 &# ;;9
'"&V'%[# g219 %X["9

^Y_ J9 g021<# D9 L.=.55021# 21+ g9 L/8*T# c`B.2301< *.+45 :./ >.013 01:./72N
30.1 53./2<4 01 A/034 25?7743/0* 747./045#d 01 +#',< 1222 1*&< 56$!<
1*0'#$3&-'* =("'#6# K0*4# `/21*4# ;;9 %%ZZV%%["# &""[9

^Z_ J9 g021<# G9 E23445*8# E9 I*=A2/3P# 21+ g9 L/8*T# cG21T 7.+8B230.1 :./
"25= 747./045#d 01 +#',< 1222 1*&< 56$!< 1*0'#$3&-'*' =("'#6# &""O9

^[_ E9 f41+2BB 21+ g9 H9 a0,,.15# >3*? ,'##"43&-'* $"&(')/9 FR:./+
M10W4/503? 6/455# Kh# %XX"9

^O_ H9 C9 f183=# =(" 3#& '0 ,'$!%&"# !#'.#3$$-*.# W.B9 '# &1+ C+9# J++05.1N
S45B4?# %XXO9

^X_ H9 b9 \4=74/# cQ42*=01< *.7,0123./02B 3/0*T5 3. 2 *.7;834/#d 01 +#',<
56$!'/< 9!!4< :3&(< 7'$@-*3&'#-34 9*346/-/# W.B9 %"# J74/9 E23=9 I.*9#
6/.W0+41*4# G9@9# ;;9 %[XN%X'# %XZ"9
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Joint rewriting and error correction scheme
Rank Modulation

Summary and Future Directions

One-Error-Correcting Code

Construction (One-Error-Correcting Rank Modulation Code)

Let C1,C2 ⊆ Sn denote two rank modulation codes constructed as
follows. Let A ∈ Sn be a general permutation whose inversion vector is
(x1, x2, · · · , xn−1). Then A is a codeword in C1 iff the following equation
is satisfied:

n−1∑

i=1

ixi ≡ 0 (mod 2n − 1)

A is a codeword in C2 iff the following equation is satisfied:

n−2∑

i=1

ixi + (n − 1) · (−xn−1) ≡ 0 (mod 2n − 1)

Between C1 and C2, choose the code with more codewords as the final
output.
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Joint rewriting and error correction scheme
Rank Modulation

Summary and Future Directions

One-Error-Correcting Code

For the above code, it can be proved that:

The code can correct one Kendall error.

The size of the code is at least (n−1)!
2 .

The size of the code is at least half of optimal.
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Rank Modulation

Summary and Future Directions

Codes Correcting More Errors [1]

The above code can be generalized to correct more errors.

C = {(x1, x2, · · · , xn−1) |
n−1∑

i=1

hixi ≡ 0 mod m}

Let A(n, d) be the maximum number of permutations in Sn

with minimum Kendall-tau distance d . We call

C (d) = lim
n→∞

ln A(n, d)

ln n!

capacity of rank modulation ECC of Kendall-tau distance d .

C (d) =





1 if d = O(n)

1− ε if d = Θ(n1+ε), 0 < ε < 1

0 if d = Θ(n2)

[1] A. Barg and A. Mazumdar, “Codes in Permutations and Error Correction for Rank Modulation,” ISIT’10.
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Summary and Future Directions

More Aspects of Rank Modulation

Rank Modulation wit Multi-set Permutation: A bridge to existing
ECC.

Efficient rewriting.
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Error 
Correction

Rank 
Modulation

Rewriting
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Rank Modulation

Summary and Future Directions

Open Problems on Coding for Flash Memory

Codes for Error Correction

Data Representation:
MLC, Rank Modulation

Codes for Rewriting

58 / 64



Joint rewriting and error correction scheme
Rank Modulation

Summary and Future Directions

Open Problems on Coding for Flash Memory

Codes for Error Correction

Data Representation:
MLC, Rank Modulation

Codes for Rewriting

Signal Processing

59 / 64



Joint rewriting and error correction scheme
Rank Modulation

Summary and Future Directions

Open Problems on Coding for Flash Memory

Codes for Error Correction

Data Representation:
MLC, Rank Modulation

Codes for Rewriting

Signal Processing

Codes for Fast Read

60 / 64



Joint rewriting and error correction scheme
Rank Modulation

Summary and Future Directions

Open Problems on Coding for Flash Memory

Codes for Error Correction

Data Representation:
MLC, Rank Modulation

Codes for Rewriting

Signal Processing

Codes for Fast Read

Codes for Different NVMs:
Flash Memory, PCM, etc.

61 / 64



Joint rewriting and error correction scheme
Rank Modulation

Summary and Future Directions

Open Problems on Coding for Flash Memory

Codes for Error Correction

Data Representation:
MLC, Rank Modulation

Codes for Rewriting

Signal Processing

Codes for Fast Read

Codes for Different NVMs:
Flash Memory, PCM, etc.RAID-like 

Systems

3D Memory

Short-term and
Long-term Memory

Memory
Scrubbing

Codes for 
Computing

In-Memory
Source/Channel Coding

62 / 64



Joint rewriting and error correction scheme
Rank Modulation

Summary and Future Directions

Open Problems on Coding for Flash Memory

Codes for Error Correction

Data Representation:
MLC, Rank Modulation

Codes for Rewriting

Signal Processing

Codes for Fast Read

Codes for Different NVMs:
Flash Memory, PCM, etc.RAID-like 

Systems

3D Memory

Short-term and
Long-term Memory

Memory
Scrubbing

Codes for 
Computing

In-Memory
Source/Channel Coding

63 / 64



Joint rewriting and error correction scheme
Rank Modulation

Summary and Future Directions

Open Problems on Coding for Flash Memory

64 / 64


	Joint rewriting and error correction scheme
	Rank Modulation
	Summary and Future Directions

