Making Error Correcting Codes Work
for Flash Memory

Part Ill: New Coding Methods

Anxiao (Andrew) Jiang

Department of Computer Science and Engineering
Texas A&M University

Tutorial at Flash Memory Summit, August 12, 2013

1/64

Outline of this talk

We will learn about

@ Joint rewriting and error correction scheme,

2/64

Outline of this talk

We will learn about
@ Joint rewriting and error correction scheme,

@ Rank modulation scheme and its error correction,

2/64

Outline of this talk

We will learn about
@ Joint rewriting and error correction scheme,
@ Rank modulation scheme and its error correction,

@ Summary and future directions.

2/64

Joint rewriting and error correction scheme

Joint rewriting and error correction scheme

3/64

Joint rewriting and error correction scheme

Concept of Rewriting

TLC: 8 Levels
No rewrite One rewrite Six rewrites
t 011 01 0
010 00 1
000 10 0
001 11 1
101 01 0
100 00 1
110 10 0
111 11 1

4/64

Joint rewriting and error correction scheme

Concept of Rewriting

Advantage of rewriting: Longevity of memory.
Why?

@ Delay block erasures.

@ Trade instantaneous capacity for sum-capacity over the
memory's lifetime.

Rewriting can be applied to any number of levels, including SLC.

5/ 64

Joint rewriting and error correction scheme

Review: Basic Problem for Write-Once Memory

Let us recall the basic question for Write-Once Memory (WOM):

@ Suppose you have n binary cells. Every cell can change its
value only from 0 to 1, not from 1 to 0.
How can you write data, and then rewrite, rewrite, rewrite - - -
the data?

6/64

Joint rewriting and error correction scheme

Review: Write Once Memory (WOM) [1]

Example: Store 2 bits in 3 SLCs. Write the 2-bit data twice.

Cell Levels:

Data: 00

[1] R. L. Rivest and A. Shamir, “How to reuse a ‘write-once’ memory,” in Information and Control, vol. 55, pp.
1-19, 1982.

7/64

Joint rewriting and error correction scheme

Review: Write Once Memory (WOM)

Example: Store 2 bits in 3 SLCs. Write the 2-bit data twice.

1st write: 10

Cell Levels:

Data: 00

8/64

Joint rewriting and error correction scheme

Review: Write Once Memory (WOM)

Example: Store 2 bits in 3 SLCs. Write the 2-bit data twice.

1st write: 10
2nd write: 01

Cell Levels:

Data: 00

9/64

Joint rewriting and error correction scheme

Review: Write Once Memory (WOM)

Example: Store 2 bits in 3 SLCs. Write the 2-bit data twice.

1st write: 10
2nd write: 01

Cell Levels:

Data: 00

2,2
Sum rate: 5+5=133

10/ 64

Joint rewriting and error correction scheme

Review: Write-Once Memory Code

This kind of code is called Write-Once Memory (WOM) code.

It is potentially a powerful technology for Flash Memories.

11/64

Joint rewriting and error correction scheme

Review: Capacity of WOM [1][2]

For WOM of g-level cells and t rewrites, the capacity (maximum
achievable sum rate) is
| t+qg—-1
o)
g2 g—1
bits per cell.

[1] C. Heegard, On the capacity of permanent memory, in I[EEE Trans. Information Theory, vol. 1T-31, pp. 34-42,
1985.

[2] F. Fu and A. J. Han Vinck, On the capacity of generalized write-once memory with state transitions described
by an arbitrary directed acyclic graph, in IEEE Trans. Information Theory, vol. 45, no. 1, pp. 308-313, 1999.

12/64

Joint rewriting and error correction scheme

Review: Capacity of WOM

— WOM-q=2 ----- WOM-q=4 WOM-q=8
Ordinary-q=2 — - Ordinary-q=4 — - Ordinary-q=8

13/64

Joint rewriting and error correction scheme

Recent Developments

How to design good WOM codes?

Two capacity-achieving codes were published in 2012 — the same
year!:
@ A. Shpilka, Capacity achieving multiwrite WOM codes, 2012.

@ D. Burshtein and A. Strugatski, Polar write once memory
codes, 2012.

14 /64

Joint rewriting and error correction scheme

Two Parameters: o« and ¢

For a t-write WOM code, consider one of its t writes.

There are two important parameters for this write:
@ «: The fraction of cells that are 0 before this write.

@ ¢: For the cells of level 0 before this write, € is the fraction of
them that are changed to 1 in this write.

For t-write WOM codes, the optimal values of « and € are known
for each of the t writes.

15/64

Joint rewriting and error correction scheme

Polar WOM Code [1]

Idea of Burshtein and Strugatski: See a write as the decoding of a
polar code:

@ See the cells’ state BEFORE the write as a noisy Polar
codeword.

@ See the cells’ state AFTER the write as the correct (i.e.,
error-free) Polar codeword.

More precisely, they see the write as lossy data compression, using
the method presented by Korada and Urbanke [2].

[1] D. Burshtein and A. Strugatski, Polar Write Once Memory Codes, in Proc. ISIT, 2012.
[2] S. Korada and R. Urbanke, Polar Codes Are Optimal For Lossy Source Coding, in IEEE Transactions on

Information Theory, vol. 56, no. 4, pp. 1751-1768, 2010.

16 /64

Joint rewriting and error correction scheme

Polar WOM Code

Smart Idea by Burshtein and Strugatski:
@ Add dither to cell:
o Let s € {0,1} be the level of a cell.
o Let g € {0,1} be a pseudo-random number known to the
encoder and decoder.
o Let v =s@ g be called the value of the cell.
@ Build a test channel for the write, which we shall call the WOM channel:

(1,0)
Vv': value of a cell
after the write.

\ 0

’

(s,v): level and value
of a cell before the write.

0o /

(s,v)

0, 1)

.1

Fig. 1. The WOM channel WOM(x, €).

17/64

Joint rewriting and error correction scheme

Polar WOM Code: Process of A Write: Encode

Polar Codeword

Input Bits (cell values after WOM channel
the wnt?) Cell level and value
\ R . before the write

ey \| * it
| | -
1 frozen set | »C}—»
; for WOM | _,:}_,
\ channel | -
i i
I | —»
R Polar ©_>

v
AN
-
—>
—>
—>
—>
— Encoder —C__—
—
—
-
—>
—>
—>
—

18/64

Joint rewriting and error correction scheme

Polar WOM Code: Process of A Write: Encode

Polar Codeword

Input Bits (cell values after WOM channel
| the write ‘
\\) Cell level and value
\ L before the write
,,,,,,,,,,,,, Al * -
o«
frozen set —C__ O

i for WOM E
| channel E
: ' Polar

Encoder

Data

19/64

Joint rewriting and error correction scheme

Polar WOM Code: Process of A Write: Encode

Polar Codeword

Input Bits (cell values after WOM channel
\\ the wr|t<\a) Cell level and value
\ \ e before the write
fommmmm—————y v Al & s
] | -
| — >
1 frozen set | —» QC}_>
! for WOM |, ,_,C}_,
| channel |_ NG
) i
: e Polar [G >
- =" Known
— Encoder —~C_—
Data —
- e
- e
- B e
- =
— —C)

Computed

20/64

Joint rewriting and error correction scheme

Polar WOM Code: Process of A Write: Encode

Polar Codeword

Input Bits (cell values after WOM channel
\ the write ’
\ wn \\) - Cell level and value
\ v L . before the write
fom—————y v | * //’
; — - -
1 frozen set |—» —C__O—
! for WOM |, —C__—
] |
i channel E4 _,CZ}_,
]

Polar e
Encoder —~C

-

RERRR’

——
Data e
o

—~ ~—

—~ ——

—~ e

—> G

A
Computed Computed

21/64

Joint rewriting and error correction scheme

Polar WOM Code: Process of A Write: Decode

Polar Codeword

Encoder —~C

Input Bits (cell values after WOM channel
\ the write
| wn \\) Cell level and value
\ \ 7 _ before the write
B v Al &, s
; — -«
1 frozen set |—» —C__O—
! for WOM |, —C__—
} channel :4’ ,_,CZ}_,
’ - T
— Polar
—>
—>
—>

22/64

Joint rewriting and error correction scheme

Polar WOM Code: Process of A Write: Decode

Polar Codeword
Input Bits (cell values after WOM channel
; the write -
\) . Cell level and value
\ . _. before the write

|
|
frozen set E
for WOM |
channel |
|

|

Sensssnnnsee’] Polar et
4 —~ Encoder |t

23/64

Joint rewriting and error correction scheme

For Rewriting to be used in flash memories, it is CRITICAL to
combine it with Error-Correcting Codes.

24 /64

Joint rewriting and error correction scheme

Some Codes for Joint Rewriting and Error Correction

Previous results are for correcting a few (up to 3) errors:

@ G. Zemor and G. D. Cohen, Error-Correcting WOM-Codes, in
IEEE Transactions on Information Theory, vol. 37, no. 3, pp.
730-734, 1991.

o E. Yaakobi, P. Siegel, A. Vardy, and J. Wolf, Multiple
Error-Correcting WOM-Codes, in IEEE Transactions on
Information Theory, vol. 58, no. 4, pp. 2220-2230, 2012.

25 /64

Joint rewriting and error correction scheme

New Code for Joint Rewriting and Error Correction

We now present a joint coding scheme for rewriting and error
correction, which can correct a substantial number of errors and
supports any number of rewrites.

e A. Jiang, Y. Li, E. En Gad, M. Langberg, and J. Bruck, Joint
Rewriting and Error Correction in Write-Once Memories, 2013.

26 /64

Joint rewriting and error correction scheme

Model of Rewriting and Noise

1st
write BSC(p) —» 2nd — BSC(p) — 0 0 0 tth

write write > BSC(P)

27 /64

Joint rewriting and error correction scheme

Two Channels

Consider one write.

Consider two channels:
Q@ WOM channel. Let its frozen set be Fyyom(a,e)-
© BSC channel. Let its frozen set be Fgsc(p).-

28/64

Joint rewriting and error correction scheme

General Coding Scheme

Polar Codeword

Input Bits (cell values after WOM channel
frozen set \ the write) el
for WOM \ \ e
channel \ ; -
—————— 1 v | &~

| —)
! |—>| —>©—>

Polar [t
Encoder —C_

frozen set
for BSC
channel

RERRRRN
¢

29 /64

Joint rewriting and error correction scheme

General Coding Scheme

Input Bits
frozen set \
for WOM \

channel |
-————— 1 ¥

Polar Codeword
(cell values after

| | —
/ﬁozen set
Use additional forBSC
channel
cells to store
its value

Polar
Encoder

WOM channel
the write) et

30/64

Joint rewriting and error correction scheme

Rate of the Code

Analyze the rate of a single write step:

Let N — oo be the size of the polar code.

The size of Fyyopm(a,e) (the frozen set for the WOM channel)
is aH(e)N.

The size of Fgsc(p) (the frozen set for the BSC) is H(p)N.
The number of bits in the written data is

|Fwom(a,e) — Fesc(p)l-

The number of additional cells we use to store the value in

Bsc(p)—Fwom(a,e)
Fesc(p) — FWOM(a o Is e Hip :

Fori=1,2,---,t, let M; be the(anber of bits written in the
ith write, and Iet Nadditional,i be the number of additional cells
we use to store the value in Fgsc(p) — Fwom(a,e) in the ith
write. Then the sum-rate is

t
R _ Zi:l Mi
sum — t .
N + "1 Nadditional,i

31/64

Joint rewriting and error correction scheme

When is Fgsc(p) a subset of Fyom(a,e)?

0
10 ___
o=0.
o=0.
Ey
a
<
Q
=
o
§10-2
i
- /
£) |
Ll L
% R
]
o g c)
104

0 005 01 015 02 025 0.3 035 04 045 05
€

Fig. 8. The maximum value of p found for which Fgsc(p) S Fwom(a,e)-
32/64

Joint rewriting and error correction scheme

Theoretical Analysis

It is interesting to know how much Fyon(a,e) and Fpsc(p)
intersects.

33/64

Joint rewriting and error correction scheme

Degrading WOM Channel to BSC

Fig. 3. Degrading the channel WOM (&, €*) to BSC(ae*). The two channels
on the left and on the right are equivalent.

34/64

Joint rewriting and error correction scheme

Degrading WOM Channel to Another WOM Channel

Fig. 4. Degrading channel WOM(a, £') to WOM(a,€). Here z = ie_;Z
The two channels on the left and on the right are equivalent.

35/64

Joint rewriting and error correction scheme

Common Upgrading/Degrading of WOM-channel and BSC

Lemma 2. When p < ae,

Fyome,2) & <F BSC(p) FWOM(a,e)) ,

and

(FWOM(ac,e) U FBSC(p)) C Fgsc(ae)-

36 /64

Joint rewriting and error correction scheme

Common Upgrading/Degrading of WOM-channel and BSC

37/64

Joint rewriting and error correction scheme

Lower Bound to Achievable Sum-Rate

3.5 = T r
oiseless

w
T
[OTOTT Z|

Lower Bound to Achievable Sum-rate

10

Fig. 6. Lower bound to achievable sum-rates for different error probability

p-

38/64

Rank Modulation

Rank Modulation

39/64

Rank Modulation

Definition of Rank Modulation [1-2]

Rank Modulation:

We use the relative order of cell
levels (instead of their absolute
values) to represent data.

[1] A. Jiang, R. Mateescu, M. Schwartz and J. Bruck, “Rank Modulation for Flash Memories,” in Proc. IEEE
International Symposium on Information Theory (ISIT), pp. 1731-1735, July 2008.

[2] A. Jiang, M. Schwartz and J. Bruck, “Error-Correcting Codes for Rank Modulation,” in Proc. IEEE
International Symposium on Information Theory (ISIT), pp. 1736-1740, July 2008.

40/64

Rank Modulation

Examples and Extensions of Rank Modulation

@ Example: Use 2 cells to store 1 bit.

Relative order: (1,2) Relative order: (2,1)
Value of data: 0 Value of data: 1

&% 5%
cell 2 cell 1

41/64

Rank Modulation

Examples and Extensions of Rank Modulation

@ Example: Use 2 cells to store 1 bit.

Relative order: (1,2) Relative order: (2,1)
Value of data: 0 Value of data: 1

SISIS)
&% 5%
cell 2 cell 1

@ Example: Use 3 cells to store log, 6 bits. The relative orders

(1,2,3),(1,3,2),---,(3,2,1) are mapped to data 0,1,--- ,5.

41/64

Rank Modulation

Examples and Extensions of Rank Modulation

@ Example: Use 2 cells to store 1 bit.

Relative order: (1,2) Relative order: (2,1)
Value of data: 0 Value of data: 1

SISIS)
&% 5%
cell 2 cell 1

@ Example: Use 3 cells to store log, 6 bits. The relative orders
(1,2,3),(1,3,2),---,(3,2,1) are mapped to data 0,1,--- ,5.
@ In general, k cells can represent log,(k!) bits.

41/64

Rank Modulation

Rank Modulation using Multi-set Permutation

Extension: Let each rank have m cells.

Let m = 4. The following is a multi-set permutation

({2,4,6,9},{1,5,10,12},{3,7,8,11}).

©) @ O) O Rank 3
@ @ @ Rank 2
@ @ @ Rank 1

42/64

Rank Modulation

Advantages of Rank Modulation

Easy Memory Scrubbing:

o Long-term data reliability.

@ Easier cell programming.

43/64

Rank Modulation

Error-Correcting Codes for Rank Modulation

Error Correcting Codes for Rank Modulation

44 /64

Rank Modulation

Error Models and Distance between Permutations

Based on the error model, there are various reasonable choices for
the distance between permutations:

e Kendall-tau distance. (To be introduced in detail.)

o [, distance.
@ Gaussian noise based distance.

@ Distance defined based on asymmetric errors or inter-cell
interference.

We should choose the distance appropriately based on the type and
magnitude of errors.

45 /64

Rank Modulation

Kendall-tau Distance for Rank Modulation ECC [1]

When errors happen, the smallest change in a permutation is the local
exchange of two adjacent numbers in the permutation. That is,

(31,"' ydi—1, aiaaf+1 aai+27"' aan) _>(317"' ydi—1, ai+l-,ai aai+27"‘ ,an)
N—— ——
adjacent pair adjacent pair

46 /64

Rank Modulation

Kendall-tau Distance for Rank Modulation ECC [1]

When errors happen, the smallest change in a permutation is the local
exchange of two adjacent numbers in the permutation. That is,

(31,"' ydi—1, aiaaf+1 aai+27"' aan) _>(317"' ydi—1, ai+l-,ai aai+27"‘ ,an)
N—— ——
adjacent pair adjacent pair
Example:
Original Cell Levels Noisy Cell Levels
(2.1,534) (2,1,3,5,4)

46 /64

Rank Modulation

Kendall-tau Distance for Rank Modulation ECC [1]

When errors happen, the smallest change in a permutation is the local
exchange of two adjacent numbers in the permutation. That is,

(31,"' ydi—1, aiaaf+1 aai+27"' aan) — (317"' ydi—1, ai+l-,ai aai+27"‘ ,an)
N—— ——

adjacent pair adjacent pair
Example:
Original Cell Levels Noisy Cell Levels
il -
U D
(2.1,534) (2,1,3,5,4)

We can extend the concept to multiple such “local exchanges” (for larger
errors).

[1] A. Jiang, M. Schwartz and J. Bruck, “Error-Correcting Codes for Rank Modulation,” in Proc. IEEE
International Symposium on Information Theory (ISIT), pp. 1736-1740, July 2008.

46 /64

Rank Modulation

Kendall-tau Distance for Rank Modulation ECC

Definition (Adjacent Transposition)

An adjacent transposition is the local exchange of two neighboring
numbers in a permutation, namely,

(31,"' ydi—1,j,dj+1,dj+2," " 73n) — (31,"' ydi—1,48i4+1,8j,di42, """ ,dn

47 /64

Rank Modulation

Kendall-tau Distance for Rank Modulation ECC

Definition (Adjacent Transposition)

An adjacent transposition is the local exchange of two neighboring
numbers in a permutation, namely,

(31,"' ydi—1,j,dj+1,dj+2," " 73n) — (31,"' ydi—1,48i4+1,8j,di42, """ ,dn
w

Definition (Kendall-tau Distance)

Given two permutations A and B, the Kendall-tau distance between
them, d.(A, B), is the minimum number of adjacent transpositions
needed to change A into B. (Note that d,(A, B) = d,(B,A).)

47 /64

Rank Modulation

Kendall-tau Distance for Rank Modulation ECC

Definition (Adjacent Transposition)

An adjacent transposition is the local exchange of two neighboring
numbers in a permutation, namely,

(31,"' ydi—1,j,dj+1,dj+2," " 73n) — (31,"' ydi—1,48i4+1,8j,di42, """ ,dn

Definition (Kendall-tau Distance)

Given two permutations A and B, the Kendall-tau distance between
them, d.(A, B), is the minimum number of adjacent transpositions
needed to change A into B. (Note that d,(A, B) = d,(B,A).)

If the minimum Kendall-tau distance of a code is 2t+1, then it can
correct t adjacent transposition errors.

47 /64

Rank Modulation

Kendall-tau Distance for Rank Modulation ECC

Definition (State Diagram)
Vertices are permutations. There is an undirected edge between
two permutations A, B € S, iff d-(A, B) = 1.

Example: The state diagram for n = 3 cells is

(2,1,3) = (23,1) =,
(1,2,3) (3,2,1)
*(1,32) —e (3,1,2)«"

48 /64

Rank Modulation

Kendall-tau Distance for Rank Modulation ECC

Example: The state diagram for n = 4 cells is

2 0 e o

49 /64

Rank Modulation

One-Error-Correcting Code

We introduce an error-correcting code of minimum Kendall-tau distance
3, which corrects one Kendall (i.e., adjacent transposition) error.

50 /64

Rank Modulation

One-Error-Correcting Code

We introduce an error-correcting code of minimum Kendall-tau distance
3, which corrects one Kendall (i.e., adjacent transposition) error.

Definition (Inversion Vector)

Given a permutation (a1, az, - - , a,), its inversion vector
(X13X2?"' aXn—l) € {071} X {03152} X X {0717 7”71} is
determined as follows:

@ Fori=1,2,--- ,n—1, x; is the number of elements in {1,2,--- i}
that are behind 7 + 1 in the permutation (a1, - , a,).

50 /64

Rank Modulation

One-Error-Correcting Code

We introduce an error-correcting code of minimum Kendall-tau distance
3, which corrects one Kendall (i.e., adjacent transposition) error.

Definition (Inversion Vector)

Given a permutation (a1, az, - - , a,), its inversion vector
(X13X2?"' aXn—l) € {071} X {03152} X X {0717 7”71} is
determined as follows:

@ Fori=1,2,--- ,n—1, x; is the number of elements in {1,2,--- i}
that are behind 7 + 1 in the permutation (a1, - , a,).

Example: The inversion vector for (1,2,3,4) is (0,0,0). The inversion for
(4,3,2,1) is (1,2,3). The inversion vector for (2,4,3,1) is (1,1, 2).

50 /64

Rank Modulation

One-Error-Correcting Code [1]

By viewing the inversion vector as coordinates, we embed
permutations in an (n — 1)-dimensional space.

51/64

Rank Modulation

One-Error-Correcting Code [1]

By viewing the inversion vector as coordinates, we embed
permutations in an (n — 1)-dimensional space.

Fact: For any two permutations A, B € S,,, d-(A, B) is no less
than their Ly distance in the (n — 1)-dimensional space.

51/64

Rank Modulation

One-Error-Correcting Code [1]

By viewing the inversion vector as coordinates, we embed
permutations in an (n — 1)-dimensional space.

Fact: For any two permutations A, B € S,,, d-(A, B) is no less
than their Ly distance in the (n — 1)-dimensional space.

Idea: We can construct a code of minimum L; distance D in the
(n — 1)-dimensional array of size 2 x 3 X --- x n. Then it is a code
of Kendall-tau distance at least D for the permutations.

[1] A. Jiang, M. Schwartz and J. Bruck, “Error-Correcting Codes for Rank Modulation,” in Proc. IEEE
International Symposium on Information Theory (ISIT), pp. 1736-1740, July 2008.

51/64

Rank Modulation

One-Error-Correcting Code

Example: When n =3 or n = 4, the embedding is as follows. (Only
the solid edges are the edges in the state graph of permutations.)

Permutation Coordinates Permutation ~ Coordinates ~ Permutation ~ Coordinates

123 ©0) 1234 —= (0,0,0) 3124 —= (02,0

132 —= (0,1) N - 0.23) (1,2.3)
1243 — (0,0,1) 3142 — (0,2,1)

213 — (1,0) 0,1,3)
1324 — (0,1,0) 3214 —= (12,0 1, L

231 — (1)) (122
1342 — (0,1,1) 3241 — (1.2,1) i

312 —= (0.2) (0,0,3)
1423 — (0,02) 3412 —= (022)

321 — (2 - q

@) 1432 (0,1,2) 3421 (1,2,2) RER)

2134 — (1,0,0) 4123 —>(0,03) 0,0.2) 4
2143 —= (1,0,1) 4132 —= (0,13) 4

0.2) 1.2 . . (1,2,0)
2314 —= (1,1,0) 4213 —= (1,03) 0o 22
2341 —= (1,11 4231 —= (1,13 "

©1) ¢$----¢ (LD (1,1,0)
2413 —* (1,02 4312 —*=(023)
2431 —= (11,2 4321 —= (1,23 0,0.0 10,0

©0) w“) (1,12 (1,2.3) (0,0,0) (1,0,0)

(b) © (d

52 /64

Rank Modulation

One-Error-Correcting Code

Construction (One-Error-Correcting Rank Modulation Code)

Let Ci, G, C S, denote two rank modulation codes constructed as
follows. Let A € S, be a general permutation whose inversion vector is
(X1, X2, ,Xn—1). Then A is a codeword in Cy iff the following equation

is satisfied:
n—1

> ixi=0 (mod 2n-—1)

i=1

A is a codeword in G, iff the following equation is satisfied:

Between C; and C,, choose the code with more codewords as the final
output.

53/64

Rank Modulation

One-Error-Correcting Code

For the above code, it can be proved that:
@ The code can correct one Kendall error.
o The size of the code is at least ("Z1)! 1)

@ The size of the code is at least half of optimal.

54 /64

Rank Modulation

Codes Correcting More Errors [1]

@ The above code can be generalized to correct more errors.
n—1
C = {(Xl,Xz, cee ,X,,,l) | E h,'X,' =0 mod m}
i=1

o Let A(n, d) be the maximum number of permutations in S,
with minimum Kendall-tau distance d. We call

C(d) = fim NA:9)

n—oo |nnl

capacity of rank modulation ECC of Kendall-tau distance d.

1 if d = O(n)
Cd)=q1l—-¢ ifd=0(n'"9), 0<e<1
0 if d = ©(n?)

[1] A. Barg and A. Mazumdar, “Codes in Permutations and Error Correction for Rank Modulation,” ISITE'10.
55 /64

Rank Modulation

More Aspects of Rank Modulation

Rank Modulation wit Multi-set Permutation: A bridge to existing
ECC.

Efficient rewriting.

56 /64

Summary and Future Directions

Error
Correction

57 /64

Summary and Future Directions

Open Problems on Coding for Flash Memory

Codes for Error Correction

Data Representation:
MLC, Rank Modulation

Codes for Rewriting

58 /64

Summary and Future Directions

Open Problems on Coding for Flash Memory

Codes for Error Correction

Signal Processing

Data Representation:
MLC, Rank Modulation

Codes for Rewriting

59 /64

Summary and Future Directions

Open Problems on Coding for Flash Memory

Codes for Error Correction

Signal Processing

Data Representation:
MLC, Rank Modulation

Codes for Rewriting Codes for Fast Read

60 / 64

Summary and Future Directions

Open Problems on Coding for Flash Memory

Codes for Error Correction

Signal Processing

Codes for Different NVMs:
Flash Memory, PCM, etc.

Codes for Rewriting

Data Representation:
MLC, Rank Modulation

Codes for Fast Read

61/64

Summary and Future Directions

Open Problems on Coding for Flash Memory

Codes for Error Correction

Codes for Different NVMs:
RAID-like Flash Memory, PCM, etc.
Systems

In-Memory
Source/Channel Coding

Signal Processing

3D Memory

Data Representation:

Codes for MLC, Rank Modulation

Computing

Short-term and
Long-term Memory

Codes for Rewriting Memory Codes for Fast Read
Scrubbing

62 /64

Summary and Future Directions

Open Problems on Coding for Flash Memory

Codes for Error Correction

Codes for Different NVMs:
RAID-like Flash Memory, PCM, etc.
Systems

In-Memory
Source/Channel Coding

Signal Processing

3D Memory

Data Representation:

Codes for :
Computing MLC, Rank Modulation
Short-term and
Long-term Memory
Codes for Rewriting Memory Codes for Fast Read

Scrubbing

63/64

Summary and Future Directions

Open Problems on Coding for Flash Memory

	Joint rewriting and error correction scheme
	Rank Modulation
	Summary and Future Directions

