Bright Side Analytics

NAND-Flash 2D to 3D Transition

Gil Russell

3D Flash - Geometry

- Retrograde Geometry at Introduction
 - 2D X/Y geometry nearly constant below 19 nm
 - Concentration is on "Z" layering (cost effectiveness)
 - Implication: Limited number of 2D shrinks
 - Larger geometry required for:
 - Reliability
 - Durability
 - Yield
- Increasing the number of layers
 - The new shrink?
 - Price-per-bit slope change?

3D Flash - Process Technology

- Device physics well known
- Nearest neighbor disturb

 Still a problem
- SiO3 Floating Gate to SiN Charge Trap

 High Program/Erase voltage still required
 - Silicon Nitride lithography difficult under 20 nm
- Vender specific device characteristics
- 2D geometry to layer number optimization
- IP ownership arrangements
 - Remain a challenge

3D Flash - Economics

- Oligopolization effects
 - Stable pricing
 - Complacent competitive environment
 - Vendor specific device and services
- Business Cycle
- Fab Stall
 - 450 mm Wafer Fab push out [2018?]
 - EUV push out [2016?]
- Maintain 300 mm wafer and Flash process infrastructure
- Vertical integration of controller & firmware
- "Cost Effectiveness" situation

3D Flash - Roadmap Challenges

- Roadmap laundry list
 - "Cost Effectiveness" ?
 - SLC now, MLC, TLC later?
 - Redundancy requirements?
 - Flash subsystem cost escalation?
 - Voltage scaling?
 - Power?
- Marginal system level performance gain
- "Cost Effectiveness" situation
- Next generation technology on the horizon ready

Non-Volatile - Next Gen

- Only one type will reach commodity status

 STT, MRAM, RRAM & PCM candidates
- Law of commodity memory:
 <u>"Price is always the determining factor"</u>
- Favored candidate: Resistive RAM [RRAM]
 - Adesto (discrete), Panasonic (SoC) in production
 - Altis Semiconductor sampling (Adesto SoC)
 - Crossbar (SoC) demonstrator
 - Micron, SK Hynix, SanDisk, Toshiba & Rambus in development

Resistive RAM - Roadmap Feature Set

- Standard CMOS fab process
- BEOL "bolt on/over" SoC
- Both voltage & geometry scaling below 10 nm
- 0.5X smaller cell than NAND
- 10X endurance over NAND
- Read/Write symmetry & Byte Write
- 20X greater write performance than NAND
- 20X lower power than NAND
- Radiation resistant
- Cost effective
- IP dates to ~1990
- long term roadmap

Summary

- 3D NAND will ramp through 2015
 - "Cost Effectiveness" requires market validation
 - No real performance deltas
- Resistive RAM introductions create a competitive market race for dominance
 - Incumbent producers set on 3D NAND production prior to resistive RAM launch
 - Defection of a single producer will change everything...,

