

Power Cycling Challenge

Andy Tomlin – Aug 2013

Power cycling problem

- Solid state devices robustness under power cycling is known challenge for the industry
 - https://www.usenix.org/system/files/conference/fast13/fast13-final80.pdf
 - http://www.storage-switzerland.com/Articles/Entries/2013/4/10_Power_Failure_and_Flash_Storage.html
- There are multiple levels of the challenge
 - Power protection scheme
 - Robustness of solution
 - Testability of problem
 - (<u>http://www.flashmemorysummit.com/English/Collaterals/Proceedings/2012/20120823_S304</u>
 A_Tomlin.pdf)

Flash management system challenges

- Demands of power cycling are the opposite of demands of normal operation.
 - Normal operation requires minimum write amplification
 - Less meta data written the better
 - Meta data writing lags user data writing
- For power cycling
 - Time to ready key issue
 - Complexity is the enemy
 - Synchronizing write data and meta data

Power cycling protection options

User data

- Command completion after write to flash (DRAM expensive + has challenges with lower page corruption)
- Secondary, faster (more expensive) non volatile memory (eg MRAM)
- Hold up circuit to write data in buffer (cost, component reliability)
- Binary cache (WA impact)
- Combination

Meta data

- Save via non volatile or hold up circuit same as user data
- Deterministic loss and limited scanning
- Full scanning (extremely slow)

Mapping schemes

Logical to physical mapping tables

- Tables written to flash contains logically grouped data based on host addresses
- Often used with secondary higher level system map to enable finding all meta data quickly.
- Big advantage for power up as upon loading system map (and possible minimal scanning) the mapping table is coherent and host read write can start
 - For lower end client type applications that do not use external DRAM – only solution
 - For mid range SSD with external DRAM provides fairly consistent time to ready independent of capacity point
 - For high end flash appliances with thin provisioning only solution

Mapping schemes

Physical to Logical mapping tables

- Tables written to flash contains physically grouped data based on physical addresses
- WA advantage in normal operation as mapping matches write process resulting in less overhead
- Problematic for power cycling as map only coherent after ALL mapping data read.
 - Makes time to ready capacity dependent
 - Time to ready gated by FW processing time

Conclusions

- Power cycling challenge typically drives flash management system design
- Complexity of problem and challenge of testing typically makes it the long pole for product development
- Anything that is good for normal operation is usually bad for power cycling
- Compression makes problem more difficult
- Thin provisioning also makes the problem more difficult
- Snapshots make problem more difficult
- The right architecture plus experience and strength of design team critical to success