
How Next Generation NV Technology
Affects Storage Stacks and Architectures

Marty Czekalski, Interface and
Emerging Architecture Program
Manager, Seagate Technology

Flash Memory Summit 2013
Santa Clara, CA

1

Outline

 Overview of existing SW stacks and
interfaces

 New NVM devices
 NVM Programming Models

• Block, File, Persistent Memory (PM)
 Technical and Ecosystem Challenges

Conventional Storage Architecture

CPU

DRAM Memory

RAID
Controller

Flash SSDs

PCIe Bus

Applications

OS
Stack

IHV Driver

New
Access

Methods

Typically File or Virtual IO,
Load/Store

Logical Block IO

SAS or SATA
interface Flash Translation

Layer and
Management

Command,
Queuing and
DMA engines

Page Read, Page Write, Block Erase

Logical Block IO
SCSI commands

SSD FW

Very Limited options

RAID or JBOD
function

Flash parts

RAID or HBA FW

IHV Specific

Physical Block IO Conventional Drive FF
and Bays

On Motherboard or
add in PCIe CEM Card

PCIe RAID Aggregation Architecture

CPU

DRAM Memory

RAID
Controller

Flash SSDs

PCIe Bus

Applications

OS
Stack

IHV Driver

New
Access

Methods

Typically File or Virtual IO,
Load/Store

Logical Block IO

SAS or SATA interface

Flash Translation
Layer and

Management

Command,
Queuing and
DMA engines

Page Read, Page Write, Block Erase

Logical Block IO
SCSI commands

SSD FW

Very Limited options

RAID 0 or 5 function

Flash parts

RAID FW

IHV Specific

Physical Block IO Assembled on a
PCIe CEM Card

CPU

DRAM Memory

Controller

Flash parts

PCIe Bus

Applications

OS
Stack

Driver

On-load SSD Architectures

New
Access

Methods

Typically File or Virtual IO,
Load/Store

Logical Block IO

Physical Block IO

Flash Translation
Layer and

Management

Command,
Queuing and DMA

engines

Page Read, Page Write, Block Erase

Little or no firmware in controller,
primarily HW state machines

More options

IHV Specific

PCIe CEM Card or drive FF
(Express Bay or SATA
Express)

NVMe and SCSIe Architectures

CPU

DRAM Memory

Controller

Flash parts

PCIe Bus

Applications

OS
Stack

Driver

New
Access

Methods

Typically File or Virtual IO,
Load/Store

Logical Block IO

Physical Block IO

Flash Translation
Layer and

Management

Command,
Queuing and DMA

engines

Page Read, Page Write, Block Erase

Logical Block IO
NVMe or SCSI commands

SSD FW

Limited options

NVMe or PQI

PCIe CEM Card or drive FF
(Express Bay or SATA
Express)

Linux IO Stack

Applications

VFS (e.g. block, Network,etc) Page cache

mmap/malloc

Block IO Layer

I/O Scheduler

SCSI Upper Layer

SCSI Mid Layer

SCSI Low Layer (IHV provided)

PCIe Device PCIe SSD, RAID Controller, HBA

IHV Block Driver

SCSI Express, NVMe, Proprietary

(e.g.)Optimized
Page swap

Windows Storage Stack
Applications

IO Subsystem

File System (e.g.NTFS)

Volume Snapshot

Volume Manager

Partition Manager

Storage Spaces

SCSI Class Driver

MPIO Driver

Storport

IHV Storport Driver

PCIe Device PCIe SSD, RAID Controller, HBA

SCSI Express, NVMe, Proprietary

SW RAID

Used for Virtually all Storage Interfaces

Multi-path

Storage Driver API

Promises of new NVM Technologies vs
Flash

 High performance and low cost
• e.g. Phase Change, Memristor, RRAM
• Near DRAM performance

 Dramatically improved endurance
 Better scalability than current NVM solutions

• Replacement for flash (when cost/bit is close to
parity)

NVM Programming Models

 SNIA TWG (NVMP) preliminary specification,
V1.0.0 Revision 5, available on SNIA.org

 NVM Block Modes
• Consistent with current block based storage stack

architectures, interfaces and protocols
– Can use flash or new NVM technologies

 NVM PM Modes
• Utilizes memory which can be addressed using a

load/store model
– New NVM technologies

NVM Block Interfaces

Source: SNIA NVM Programming Model V1.0.0 Revision 5

NVM Extensions

 Leverage existing OS system constructs
 NVM Block Mode and File Mode Extensions

• Discovery and use of atomic write/read and discard
features

• The discovery of granularities (length or alignment
characteristics)

• Discovery and use of per-block metadata used for
verifying integrity

• Discovery and use of ability for applications or kernel
components to mark blocks as unreadable

• Potential use of memory mapped files

Relative Cost vs Time Chart
C

os
t

Time

NVM Persistent Memory (PM)

 Memory capable of Load/Store operations
 Does not cause context switching
 NV DIMMS today – New NVM devices in the

future
 How to utilize PM in systems

NVM Persistent Memory
(PM)Interfaces

Source: SNIA NVM Programming Model V1.0.0 Revision 5

Shifting the Persistence Boundary

CPU

Caches

DRAM

Storage

IO Subsystem Persistence
Boundary

• Persistent
• Durable
• Snap Shots
• Multi Access
• Access Control
• Error handling
• Management
• Security

Shifting the Persistence Boundary

CPU

Caches

DRAM

Storage

IO Subsystem

CPU

Caches

PM

Storage

IO Subsystem Persistence
Boundary

• Persistent
• Durable
• Snap Shots
• Multi Access
• Access Control
• Error handling
• Management
• Security

NVM PM Extensions

 Again, build upon existing OS interfaces
 NVM PM Volume and PM File extensions

• Discovery and getting attributes; address ranges,
connection channel, etc

• Memory map (w/options), sync, and discard
functions

• Error handling

What’s the Right Physical Interface?

 PCIe
• Memory mapped IO latency is long compared to the

device access time
 DDR4

• Excellent speed but limited configurations and
channels

• Existing virtual memory management assumptions
may not map well into PM requirement

 New Bus
• Needs to be more expandable
• Possibility of adding a management layer to better deal

with errors and media issue

Device Management

 Endurance – Promised to be much better than
Flash, but is it good enough?
• Perhaps for some applications, but not all
• Will need a high performance virtualization layer

– Integrate into processor virtual memory architecture
– Even though devices capable of fine granularity writes,

management likely to be memory page granularity or larger
– Should handle grown defects without rebooting

– Less frequent and simpler wear leveling approaches needed
– SW flexibility vs hardware performance

 ECC – Needs to be very low latency, similar to
hamming codes
• May need periodic scrubbing

Application adoption

 Use of these new methods is not transparent to an
application
• E.g. Memory mapped files are not commonly used today
• Applications need to worry about consistency

 Cost and multi platform portability will continue to be
the key factors in architectural choices
• Initial adoption by lead users where return is worth the extra

effort/competitive edge

 What features of storage are applications willing to
compromise

 Security concerns

Summary

 Conventional architectures can benefit greatly
in performance with new NVM technologies,
but will only see adoption when cost is close
to Flash

 New NVM technologies will likely see early
adoption as PM, requiring changes to
applications and OSs to fully take advantage
of performance capabilities

8/14/2013 22

	How Next Generation NV Technology Affects Storage Stacks and Architectures
	Outline
	Conventional Storage Architecture
	PCIe RAID Aggregation Architecture
	On-load SSD Architectures
	NVMe and SCSIe Architectures
	Linux IO Stack
	Windows Storage Stack
	Promises of new NVM Technologies vs Flash
	NVM Programming Models
	NVM Block Interfaces
	NVM Extensions
	Relative Cost vs Time Chart
	NVM Persistent Memory (PM)
	NVM Persistent Memory (PM)Interfaces
	Shifting the Persistence Boundary
	Shifting the Persistence Boundary
	NVM PM Extensions
	What’s the Right Physical Interface?
	Device Management
	Application adoption
	Summary

