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Outline 

 Overview of existing SW stacks and 
interfaces 

 New NVM devices 
 NVM Programming Models 

• Block, File, Persistent Memory (PM) 
 Technical and Ecosystem Challenges 
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PCIe RAID Aggregation Architecture  
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NVMe and SCSIe Architectures 
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Linux IO Stack 
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Windows Storage Stack 
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Promises of new NVM Technologies vs 
Flash 

 High performance and low cost 
• e.g. Phase Change, Memristor, RRAM 
• Near DRAM performance  

 Dramatically improved endurance 
 Better scalability than current NVM solutions 

• Replacement for flash (when cost/bit is close to 
parity) 



NVM Programming Models 

 SNIA TWG (NVMP) preliminary specification, 
V1.0.0 Revision 5, available on SNIA.org 

 NVM Block Modes 
• Consistent with current block based storage stack 

architectures, interfaces and protocols 
– Can use flash or new NVM technologies 

 NVM PM Modes 
• Utilizes memory which can be addressed using a 

load/store model 
– New NVM technologies 



NVM Block Interfaces 

Source: SNIA NVM Programming Model V1.0.0 Revision 5 



NVM Extensions 

 Leverage existing OS system constructs 
 NVM Block Mode and File Mode Extensions 

• Discovery and use of atomic write/read and discard 
features 

• The discovery of granularities (length or alignment 
characteristics) 

• Discovery and use of per-block metadata used for 
verifying integrity 

• Discovery and use of ability for applications or kernel 
components to mark blocks as unreadable  

• Potential use of memory mapped files 
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NVM Persistent Memory (PM) 

 Memory capable of Load/Store operations 
 Does not cause context switching 
 NV DIMMS today – New NVM devices in the 

future 
 How to utilize PM in systems 



NVM Persistent Memory 
(PM)Interfaces 

Source: SNIA NVM Programming Model V1.0.0 Revision 5 
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NVM PM Extensions  

 Again, build upon existing OS interfaces 
 NVM PM Volume and PM File extensions 

• Discovery and getting attributes; address ranges, 
connection channel, etc 

• Memory map (w/options), sync, and discard 
functions 

• Error handling 



What’s the Right Physical Interface? 

 PCIe 
• Memory mapped IO latency is long compared to the 

device access time 
 DDR4 

• Excellent speed but limited configurations and 
channels 

• Existing virtual memory management assumptions 
may not map well into PM requirement 

 New Bus 
• Needs to be more expandable 
• Possibility of adding a management layer to better deal 

with errors and media issue 
 



Device Management 

 Endurance – Promised to be much better than 
Flash, but is it good enough? 
• Perhaps for some applications, but not all 
• Will need a high performance virtualization layer 

– Integrate into processor virtual memory architecture 
– Even though devices capable of fine granularity writes, 

management likely to be memory page granularity or larger 
– Should handle grown defects without rebooting 

– Less frequent and simpler wear leveling approaches needed 
– SW flexibility vs hardware performance 

 ECC – Needs to be very low latency, similar to 
hamming codes  
• May need periodic scrubbing 



Application adoption 

 Use of these new methods is not transparent to an 
application 
• E.g. Memory mapped files are not commonly used today 
• Applications need to worry about consistency 

 Cost and multi platform portability will continue to be 
the key factors in architectural choices 
• Initial adoption by lead users where return is worth the extra 

effort/competitive edge 

 What features of storage are applications willing to 
compromise 

 Security concerns 
 



Summary 

 Conventional architectures can benefit greatly 
in performance with new NVM technologies, 
but will only see adoption when cost is close 
to Flash 

 New NVM technologies will likely see early 
adoption as PM, requiring changes to 
applications and OSs to fully take advantage 
of performance capabilities 
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