

MAKING NAND BETTER

SSD Design Considerations for Ultra-Low Latency

Bernie Rub

Introduction

This presentation will touch on a few design considerations related to making SSDs faster and more responsive:

- How do latency and IOPS specs relate to actual usage?
- In the evolution towards lower latency, what's after PCIe?
- Is it better to have one high capacity device or many small ones?
- Why write intensive workloads benefit most from reduced latency
- How increasing IOPS impacts endurance

Acknowledgement

 Some of the materials for this presentation have been provided by Diablo Technologies

Increasing Demand for Fast & **Responsive Storage**

Financial Services

Database/ Cloud

Virtualization

Blade

Big Data Analytics

- Low, deterministic latency transactions
- Fast Interactive Data Analysis
- Increase **Transactions** per Second
- Memcached consolidation
- Enable increased VMs per Node
- Reduce capex and opex
- Fast response times per VM
- Enable high density storage blades
- Utilize empty DIMM slots
- Increase transactions per second
- Reduce response times for analytics queries

Higher IOPS & Reduced, Deterministic Response Time

Typical Performance Curve

Example: SPC Benchmark 1 Executive Summary

TMS RamSan-630

The Path to Ultra Low Latency

Latency

100's usec

10's usec

1's usec

Timeline

The Path to Ultra Low Latency

Latency

100's usec

10's usec

1's usec

Timeline

FlashDIMM Principle

Memory Controller Path provides > 10X lower latency and 2X higher bandwidth

Reducing Latency and Improving Predictability

Reducing Latency and Improving Predictability

Connecting Flash to the Memory Bus eliminates arbitration and data contention on the I/O hub

Measured Performance on PCIe SSD

- Mixed Workload: 70% Read / 30% Writes
- · Response time with very light loads (latency) is dominated by flash read time
- Huge increase in response time with heavy loads

PCIe SSD vs. Flash DIMM

(70/30 workload)

- For mixed workloads, latency is dominated by flash read time
- · In this example, FlashDIMM with MLC has higher latency than PCIe SSD with SLC

* ULLtraDIMM is a Flash DIMM product jointly developed by Smart Storage Systems and Diablo Technologies

PCIe SSD vs. Flash DIMM

(70/30 Workload – Expanded View)

- For read or mixed workloads, latency is dominated by flash read time
- In this example, FlashDIMM with MLC has higher latency than PCle SSD with SLC

^{*} ULLtraDIMM is a Flash DIMM product jointly developed by Smart Storage Systems and Diablo Technologies

PCIe SSD vs. Flash DIMM

Linear scaling of IOPS with constant Response Time

Scaling with 8 Flash DIMMs

Linear scaling of IOPS with constant Response Time

Flash DIMM Advantage for Write Workloads

- Many applications are sensitive to write latency
 - Processes that wait for writes to complete, e.g.
 - ✓ Transactional Databases logging
 - ✓ Virtual Desktop check pointing
- Write latencies in storage devices
 - Most storage devices incur significant latency performing the physical write to the media
 - High performance SSDs significantly reduce this latency
 - ✓ Write data is immediately saved in power safe storage within controller
 - ✓ Return of status is not gated by writing to flash
 - ✓ Response time is dominated by IO Path
- By drastically reducing the IO path delays, Flash DIMM can achieve write latency << 10 μs!

Impact of Increasing Access Density

Access density quantifies the IO intensity of a workload

Endurance vs. Access Density

Drive Writes per Day for Sustained 70/30 Read/Write Workload

DWPD = Write IOPS • IOSize • 86,400

Capacity(B)

Write IOPS = Read IOPS • ρ • %Write
Relative IOPS for 70/30 workload 30%

DWPD = Read IOPS • 5.3E-2
Capacity(GB)

Access Density

Endurance vs. Access Density

Summary

- FlashDIMM reduces the IO overhead by connecting directly to the memory controller and bypassing the IO hub
- Modular storage elements scale IOPS without increasing latency
- Multiple FlashDIMMs outperform a single larger capacity PCIe SSD
- Required endurance is proportional to the access density
- Higher endurance is required to service "hotter" workloads

