

Diablo Technologies

Run Your Flash at DRAM Speeds

Aug. 13th, 2013

Riccardo Badalone, CEO

Why are Writes So Important?

- 'Persisting' data is a critical operation within Databases, File Systems, and Messaging Systems
- Writes are usually synchronous and performed on a single thread (or at least very few threads), so they are typically slow and block other transactions
- To some degree, write performance in IOPS is synonymous with 'transactions per second', so it's an important performance parameter in evaluating persistence technology
- The game is changing in terms of how data is written to Flash...

ULLtra DIMM System Solution

A Modular Flash System using the Memory Channel

Solution features:

- Software Drivers for major Operating Systems
- Memory Channel Storage[™] (MCS[™]) enables persistence accessed through DDR3 sub-system of CPU
 - IO Acceleration
 - Paging Acceleration

Problem Solved.

Read/Write Data remains within the memory sub-system

Example Deployment with Dual Socket Enterprise Processor

- Create distributed persistence with multiple entry points
- Leverage Transfer B/W of 8X concurrent DDR Channels for page transfer into persistence layer
- Increase # of parallel channels and FTL MIPS

Total DIMM slots	Total ULLtraDIMMs	Total RDIMMs	Total Provisioned Flash Capacity	DRAM Capacity Total (w/ 16GB DR)	Read IOPS	Write IOPS
24	8 x 200G	16	1.6TB	256GB	1.2M	520K

8/15/2013

Problem Solved.

Burst Write Performance

BW vs. Threads/QueueDepth

- Typically, maximum throughput is achieved at very high thread count or queue depth
- Ideally, the maximum write throughput would be available to a single threaded process

ULLtraDIMM Random Write Performance Scaling

tdimm_4

tdimm_8

tdimm_2

- _ _ _ _
- 16K Random Writes on a Single Thread
 - 950MB/s @ 7us (thread limited)
- 16K Random Writes on Four Threads
 - 2.4GB/s @ 20us (max throughput achieved)

8/15/2013

Summary

- 'Persisting' data is a critical operation within Databases, File Systems, Messaging Systems
- The memory sub-system offers high transfer rates and tremendous parallelism for persistence layers
- ULLtraDIMM scalability provides more synchronous, single threaded throughput than can be currently handled by most benchmarks
- The game is changing in terms of how data is written to Flash...

THANK YOU <u>RIC@DIABLO-TECHNOLOGIES.COM</u> 613.277.7425

8/15/2013