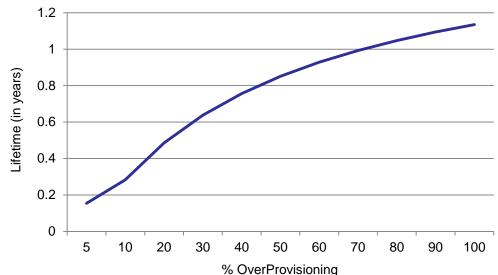


Why the Endurance of cMLC Doesn't Matter

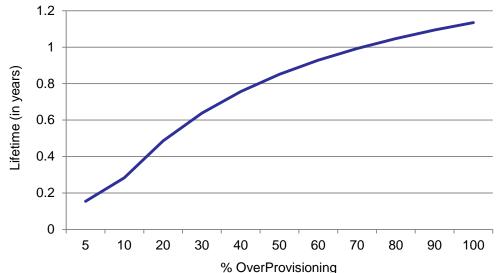
Bill Radke Director of Architecture, Skyera, Inc

Why the Endurance of cMLC Doesn't Matter

- SLC, eMLC, and cMLC
- Cycling and Endurance
- Mean Time to Data Loss


- SLC stores 1 bit per cell
 - Lowest ECC requirements
 - 100k cycles
- Enterprise-MLC stores 2 bits per cell
 - Highest ECC requirements
 - 30k cycles
- Consumer-MLC stores 2 bits per cell
 3k cycles

- All three parts are the same silicon
 Cherry-picking and trimming
- Adjusted to same ECC failure rate
- Measured using an optimized trim set
 Everything else at worst case


- Superficially, there is a danger to only 3k NAND cycles
- Chart below shows lifetime at 1MIOPS
 - Parts will show degradation within months

Cycling and Endurance: Overprovisioning

- Overprovisioning is simple optimization
 - It is also very expensive
- Not necessary for All-Flash Arrays
 - Application-driven traffic

Cycling and Endurance: Alternatives to cMLC

- cMLC and high OP
 - Significantly decreases cycling requirements
- eMLC
 - Higher native capability
- SLC
 - Higher cycling and performance

• cMLC is the lowest cost solution!

Cycling and Endurance: 100x Life Amplification

- By careful, system-wide optimization, the life can be extended by 100x
 - Instead of 0.2 years, 20 years of use
 - Makes cMLC practical
- Combination of decreased Flash traffic and extended Flash life
 - No one feature, instead tight design integration

Cycling and Endurance: Decreased Writes

- Inline compression and dedup
- Solid-state aware RAID-SE
 - Optimal performance for minimal overhead
- Garbage collection and scrubbing
 Dynamically optimizes for applications

Cycling and Endurance: Increased Endurance

- Careful analysis of device physics
 - Always operating in the sweet spot
- Adaptive, dynamic retrimming
 Optimize NAND settings as needed/able
- Exact control of operating environment

Cycling and Endurance: NAND Failures

- Decreased traffic and extended cycling are orthogonal factors
- Keep the ECC failure rate below the spec'd level across the product life
- NAND devices degrade over time
 Most protection is needed at end-of-life

- Primary concern is MTTDL
- Requires failure of ECC and RAID
 CRC & Parity still operating
- Extremely unlikely within Flash lifetime
 Most likely at end of life

Mean Time to Data Loss: ECC Failure

- ECC failure is expect to be $< 1 \times 10^{-10}$
 - Spec'd by NAND vendors
- Each 10B codewords, expect 1 failure
 - Worst-case conditions
- At 1M IOPS, a failure every 1.4 hours

Mean Time to Data Loss: RAID-SE Failure

- Skyera employs a 22+2 RAID-SE arrangement
 - Two failures during recovery for data loss
- Odds of first failure is ~ 2.1x10⁻⁹
- Odds of second failure is ~ 2.0x10⁻⁹
- Odds of a RAID failure is 4.2x10⁻¹⁸

Mean Time to Data Loss: Odds to Fail

- Skyera boxes are spec'd for 5 years
 - During the first 4 years, the Flash failure rate is very low
- During the last year, odds of data loss are 2.65x10⁻¹⁴
- The odds of winning the lottery are 6.3x10⁻⁸
 - 2M times more likely

Does the Endurance of cMLC Matter?

Does the Endurance of cMLC Matter? No!

- cMLC has enough cycles for a 5 year life
 If the cycles are carefully utilized!
- Data with errors can be recovered
 Even at the end of life
- All this requires a system-wide approach