

Removing the I/O Bottleneck in Enterprise Storage

WALTER AMSLER, SENIOR DIRECTOR HITACHI DATA SYSTEMS

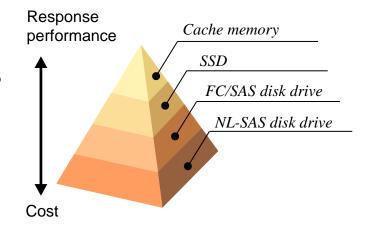
AUGUST 2013

- Enterprise Storage
 - Requirements and Characteristics
 - Reengineering for Flash removing I/O bottlenecks
- Measuring Performance
 - Application Performance Metrics vs Synthetic Benchmarks Numbers
- Summary

Requirements for Storage Systems

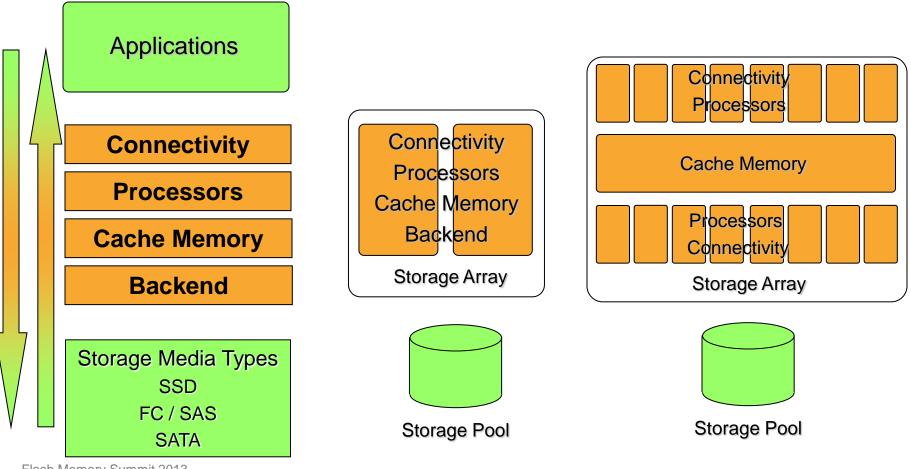
EFFECTIVELY ADDRESSING TECHNOLOGY AND BUSINESS CHALLENGES

- What Customers are demanding
 - <u>Reduce cost</u>, optimize service-level delivery via scale-up, dynamic provisioning and tiering across different media types
 - <u>Management abstraction</u> to enable ease of use, speed and automation
 - <u>24x7xforever application availability</u>, eliminate planned and unplanned outages
 - Reliability, Availability Serviceability (RAS)
- Recent Trends in High-End Storage
 - Storage Subsystems are designed for the Virtual data center
 - Storage Infrastructure is transformed in Storage Services
 - Exploitation of loosely coupled vs tightly coupled Architectures



Characterizing Storage systems

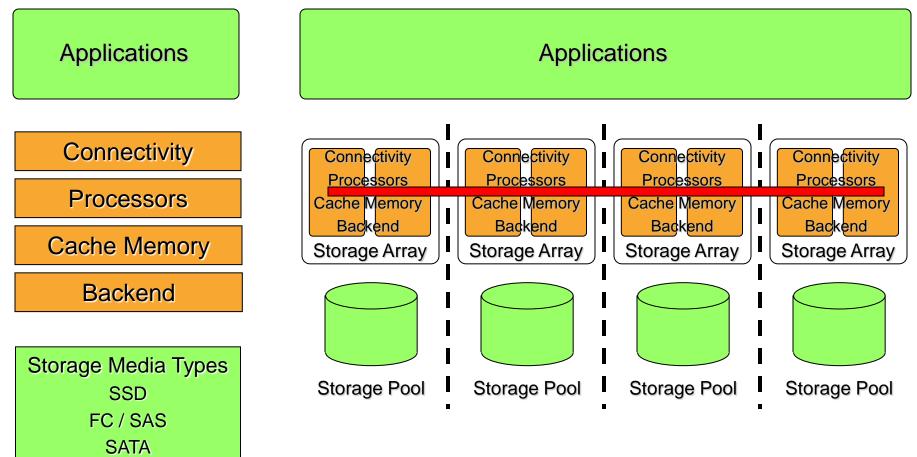
ANOTHER FORM OF RAS: REDUNDANCY, ARCHITECTURE, SCALABILITY


- Storage Architectures and design different value propositions
 - Modular Architecture vs Enterprise Architecture
 - Component/Site Redundancy
- Performance
 - Time is Money must cope with peak demands and satisfy strict SLA's
- Functionality
 - Virtualisation
 - Dynamic Tiering
 - In-System Snapshots and Clones
 - 2DC and 3DC Sync and Asynchronous Replication
 - Rich GUI/CLI Management Capabilities Ease of Use

Flash Memory Summit 2013 Santa Clara, CA

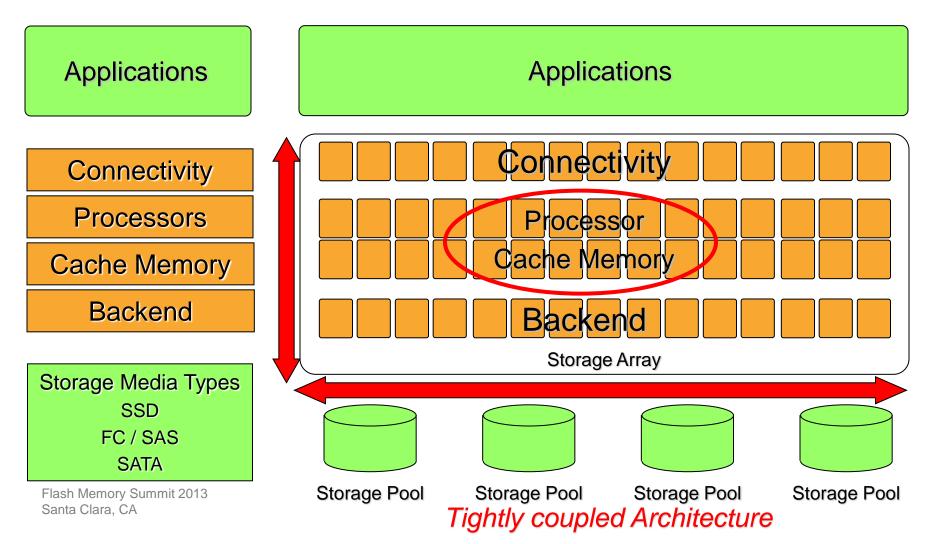
BALANCING COST, SCALABILITY, PERFORMANCE AND CAPACITY

Flash Memory Summit 2013 Santa Clara, CA

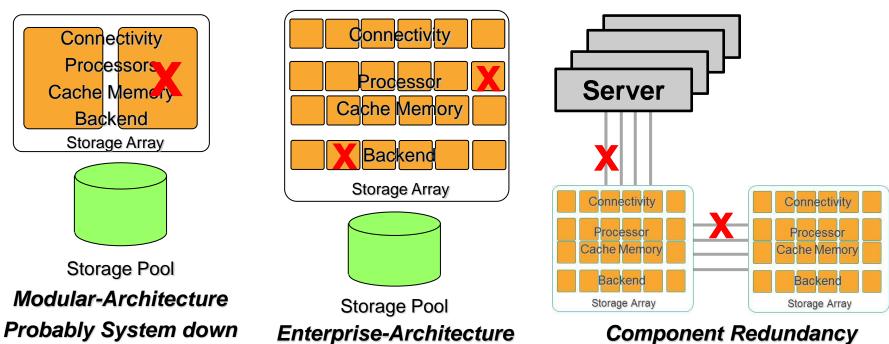

Modular-Architecture

Enterprise-Architecture

Modular storage growth – Scale-Out


ADD MORE OF THE SAME – BUT BEWARE OF ISLANDS

Flash Memory Summit 2013 Santa Clara, CA Loosely coupled Architecture


EXPAND CAPACITY, CONNECTIVITY AND PROCESSING POWER

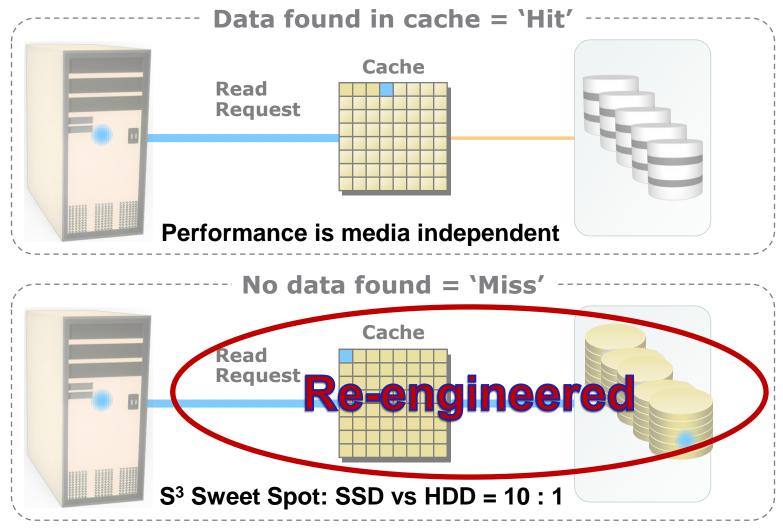
FAILURE IMPACT - GOOD ENOUGH VS BULLET PROOF

- Availability depends on failure domains and the choice of component/site redundancy options
 - Bulletproof storage array: <u>http://www.youtube.com/watch?v=Gnjb1WVkhmU</u> •

Flash Memory Summit 2013 Santa Clara, CA

Relatively little impact

25% loss of connectivity


I/O Bottleneck in Enterprise Storage

BUILT FOR FLASH FROM THE GROUND UP VS RE-ENGINEERED

- Traditional Storage Arrays
 - originally designed for hundreds, then thousands of HDD's
 - Ever larger DRAM Cache and sophisticated Algorithms mitigate/hide HDD performance characteristics
 - Works great for sequential read/write
 - Works very well for Random I/O with good Locality of reference
- The IO Gap
 - Moore's Law processor speed has increased dramatically
 - HDD Speed (Seek and RPM) has virtually stayed the same
 - server virtualization randomizes I/O, LOR is lost, aka «I/O Blender»
- The Emergence of Flash demands a new approach

Flash Memory Summit 2013 Santa Clara, CA

Read IO Operation; Cache Hits and Misses

Flash Memory Summit 2013 Santa Clara, CA

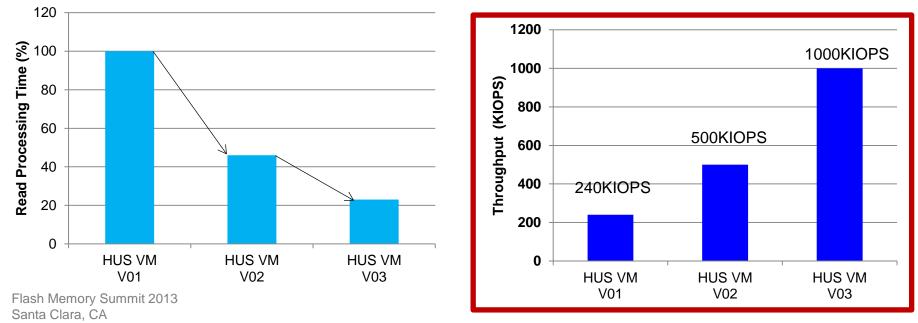
Memory

SUMMIT

Flas

ory Hitachi Innovation: Flash Acceleration

OPTIMIZING STORAGE SYSTEM SOFTWARE TO EXPLOIT FLASH

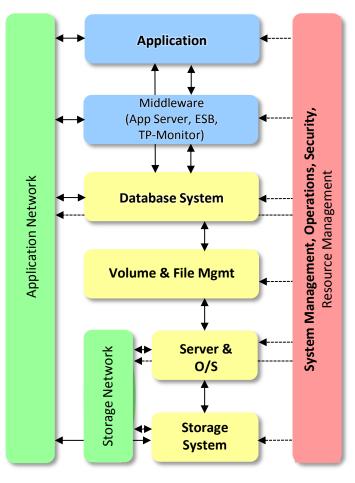

- 30+ fundamental software changes to turbo-charge performance with Flash
 - New "express" I/O processing
 - New Cache Slot Allocation method
 - Reduced ucode Overhead and path length
- Significant performance impacts
 - Up to 65% reduction in response time
 - Up to 4X Random IO scalability
- Non-disruptive installation and transparent to current applications

Flash Memory Flash Acceleration Impact for all flash array

145 PATENTS RELATED TO HITACHI FLASH TECHNOLOGY

- Backend Codepath reduction, logic and ASIC optimization
 - Version 1: Basic Design for HDD non optimized
 - Version 2: BE/FE Job Integration, Cache Buffer Slot Management
 - Version 3: use DXBF, avoid CTL to CTL communication Improve CPU L1 Cache Hit Rate for Instructions

Dry Latency and what does it really mean


MEASURING PERFORMANCE - RELEVANCE TO YOUR BUSINESS

- Vendor Provided Measurement Data
 - Objective is to show «champion numbers»
 - Customers need to have a complete understanding of what was measured and how, for example:
 - <u>80 usec Latency</u>: single 512Byte Block Read measured at Fibre Channel Port with a Fibre Channel Analyzer
 - <u>1 Million IOPS</u>: 4KB Random Reads measured by IOMETER
 - Interesting, but not relevant from an application perspective
- Need a different approach
 - Include and consider all the different technology layers of entire platform
 - Example: Oracle Database Platform Architecture

Memory Oracle Database Platform Architecture

WWW.BENCHWARE.CH

SUMMIT

Complexity of Oracle platform

Application Network (IP-based)

Bandwidth, latency during remote database mirroring (sync, async) due to switches and sql*net and tcp/ip stack (frame size, ...).

Oracle Database

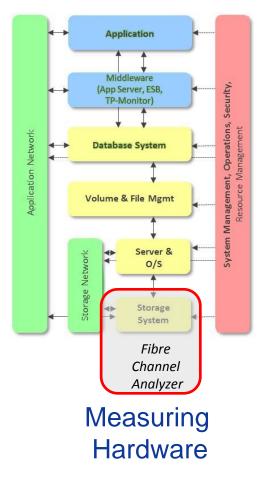
Different versions, patches and options, about hundred configuration parameters.

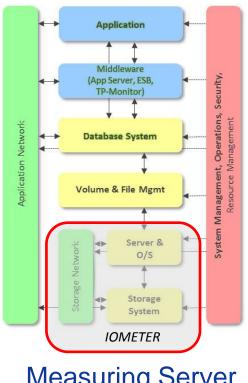
Volume & File Management

Different volume managers (VxVM, ASM) and file systems (UFS, VxFS, ext3, JFS, ZFS, raw devices), different I/O methods (async, direct), a lot of config parameters (#LUNS, queue depth, max i/o unit), software striping and/or mirroring, multipathing.

Storage Network (IB-, FC- or IP-based)

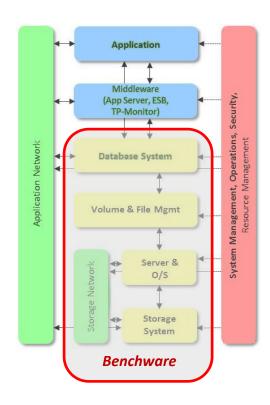
Bandwidth, latency during remote storage mirroring (sync, async) due to switches, hubs and distance.


Server & Operating System


Different server systems, processors and CPU architectures, (x86, IA-64, UltraSparc, SPARC64, Power), #cores, multithreading, main memory, bus architecture. Different operating systems and patches, over hundred configuration parameters, virtualization of resources.

Storage System

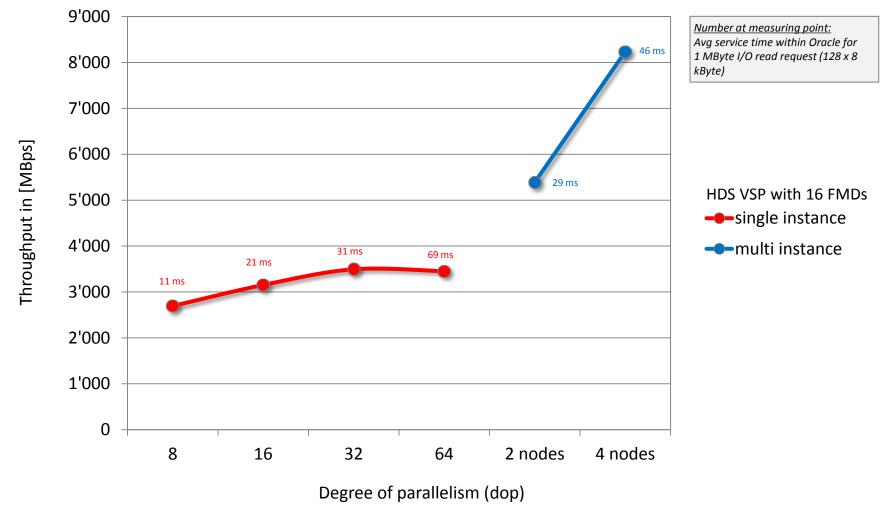
Different storage systems, storage tiers and storage technology: spindle count and speed, RAID management, cache management, server interface technology, storage system options like remote copy, hardware striping and/or mirroring, virtualization of resources.



Measuring Server and Storage and «Mindless» IO

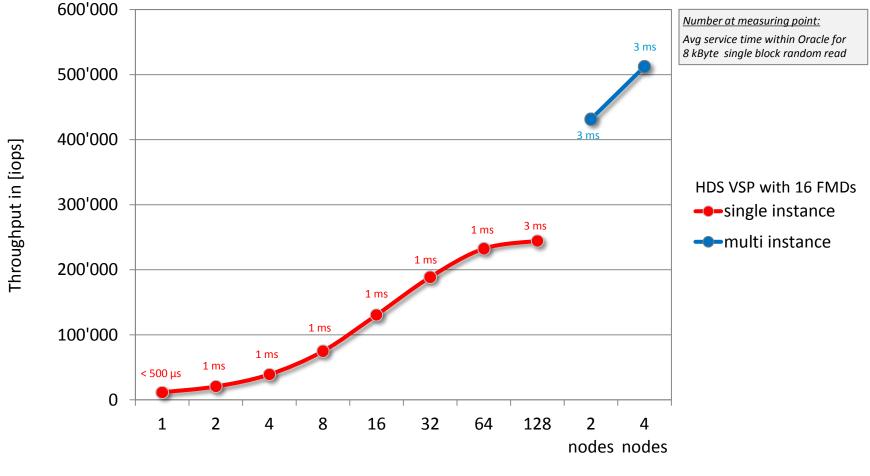
Measuring complex Application I/O or customer reality

Flash Memory Summit 2013 Santa Clara, CA



Library of Oracle benchmark tests - implemented in PL/SQL, Java and SQL

CPU Performance CPU-bound Oracle operations All operations in Level 1, 2, 3 CPU cache	OLTP systems	DWH systems	Metrics Efficiency	Unit
• pl/sql basic operations	**	**	throughput	[ops]
Server Performance CPU-bound Oracle operations All operations in RAM	OLTP systems	DWH systems	Metrics Efficiency	Unit
• in-memory SQL	***	**	throughput	[bps] [tps] [rps]
Database Performance Mixed resource usage: CPU, memory, storage	OLTP systems	DWH systems	Metrics Efficiency	Unit
• data load	**	***	speed	[rps] [tps] [qpm]
Storage Performance I/O-bound Oracle operations	OLTP systems	DWH systems	Metrics Efficiency	Unit
 sequential I/O MByte, read write 	**	***	throughput service time virtualization tiering	[MBps] [GBps] [iops] [ms]
random I/O db block size, read write	***	*		
[s] seconds [bps] buffers per second [ms] milli seconds (10 ⁻³) [rps] rows per second [μs] micro seconds (10 ⁻⁶) [tps] transactions per [ns] nano seconds (10 ⁻⁹) [ops] operations per s	mega bytes per seco giga bytes per secor i/o operations per s queries per minute	id 🄰	less important important very important	


Flash Memory Measuring Datawarehouse Workload

SEQUENTIAL READ, MULTIPLE PROCESSES – TYPICAL FOR DWH

8KB RANDOM READ; 100% CACHE MISS - TYPICAL FOR OLTP

Degree of parallelism (dop)

y What does it mean to your business?

KEY PERFORMANCE METRICS LEAD TO SERVICE LEVEL AGREEMENTS

- The measured server/storage platform will deliver:
 - 8GB/sec sequential Read throughput for your DWH
 - 250'000 8KB Random Reads with Zero Cache Hits for your OLTP application with a Response Time of less than 3 Milliseconds
- Note: Oracle Measurements for Random Read IO
 - Oracle currently does not understand «Microseconds»
 - Response Time for Random Read is reported in Milliseconds, and data is rounded e.g. 0 MS or 1 MS
- R/T for high Random Read I/O Rates generally at 1-4 MS
 - This also applies to All Flash Appliances/Arrays

- Enterprise Storage today has a lot to offer
 - RAS: Reliability, Availability, Serviceability
 - Superior Performance
 - Seamless Scale-Up Architecture
- Flash Storage Exploitation
 - Value of Re-engineering equals «Built from scratch»
 - In addition you get the functionality and EoU you need
- Performance and Latency Claims
 - Must understand what is being measured and how
 - The key is the mileage you get for your application!

Questions and discussion

Thank you