

Flash below 20nm : What is coming and When

Aug. 13 2013 Myoung Kwan Cho Flash Tech Development Division SK Hynix

Santa Clara, CA August 2013

Since the Invention of NAND

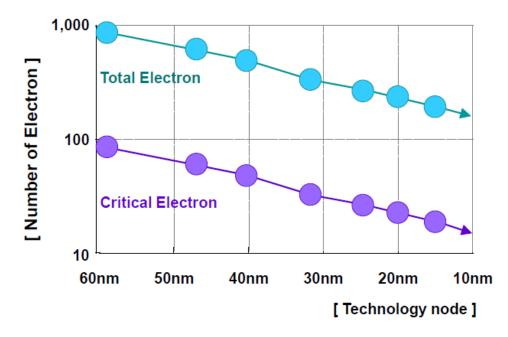
There has been big technical breakthroughs,

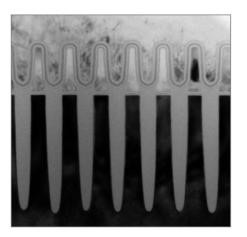
Pocket P-well Scheme for Bulk Erase with HVMOS in P-Sub.

Self Boosting for Reducing Program Disturbance.

MLC with ISPP Scheme.

Dynamic Read.

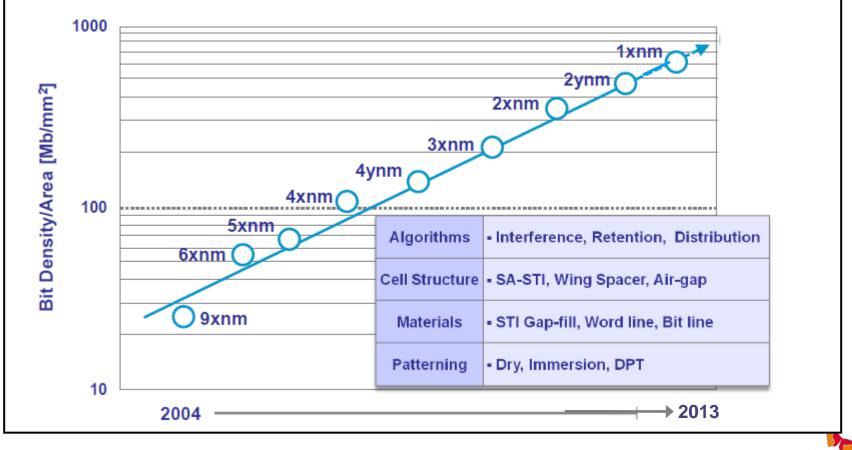

3 bits per Cell Invention


Other Controller Assisted Algorithm

In sub 1x nm cell, limitation in F/G cell is the number of stored electrons

In sub-1x nm,

how to manage 10 electrons is the most critical technical barriers.


Key notes in Flash Memory Summit 2012 SK hynix

NAND Process Scaling : Cost Reduction

We have successfully Increased bit density/area by ~50% per year.

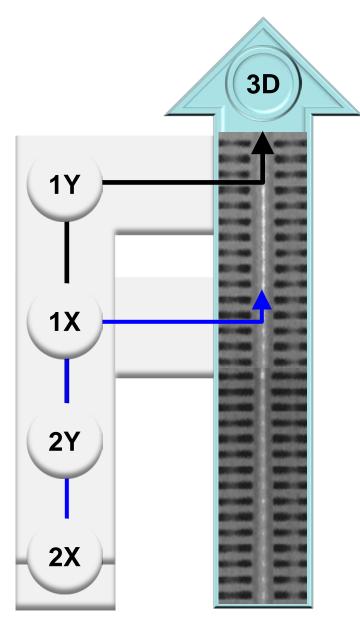
Hynix Technology node during past 10 years. One Tech – node per year

Key notes in Flash Memory Summit 2012 SK hynix

In addition to the numbers of stored electrons, there are many technical problems,

Issues with 10nm FG		Solutions
X - direction	CG poly-Si void	Device and process optimization, Air Gap in X,Y direction NAND Operation
	Interference	
	Bit-Line loading	
Y - direction	WL bending	Algorithms for Stress Reduction.
	Interference	Controller Assisted algorithms for reliability
	WL-to-WL leakage	

By the process/device optimization and operation algorithms,


- SK Hynix successfully developed 16nm technology,
- the smallest FG cell dimension.

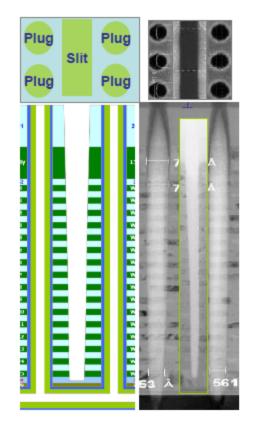
And SSD of 16nm NAND is displayed in Flash Memory Summit 2013

And NAND flash is in

Each company has each strategy of 3D NAND Product

Company A : after 1x technology.

Company B : after 1y technology.


It depends on the Investment and development policy

For a while, FG and 3D NAND will coexist and compete each other in terms of reliability, performance and density.

However, all the 3D NANDs are facing challenges in Yield & Retention

For Yield improvement

- Stabilization of multi-stack patterning
- Metrology
- Defect monitoring for deep inside 3D-structure

For retention

Needs careful cell optimization

As progress done in SK Hynix during F/G era, especially in 1y nm technology,

Needs in 3D will be overcome by,

- Deeper understanding of NWFET physics
- Stabilization in Etch and Thin Film Process
- Mobility enhancement in pillar type channel
- Higher Work Function Gate material
 - and higher K dielectric for stable erase.
- New storage site, such as dots rather than SiN,

3D product will be available in the end of this year.

Thank you for your attention.

