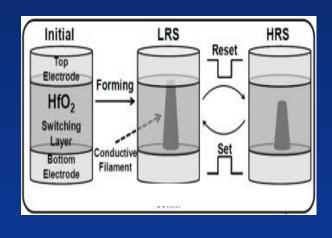

Focus on strengths and weaknesses of ReRAM

Amigo (Keiichi) Tsutsui Sony Corporation



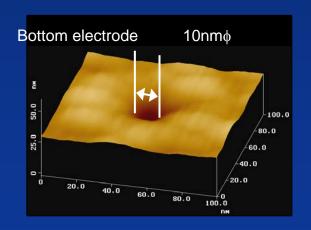
Emerging Memories

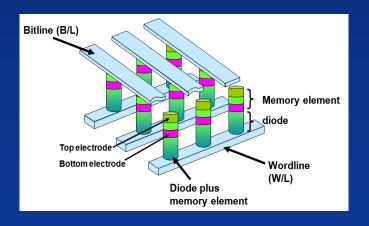
- DRAM and NAND technology have been facing scaling issues
- Emerging memories is trying to offer the potential to be DRAM and NAND drop-in replacement, respectively

STT MRAM

PCM

ReRAM

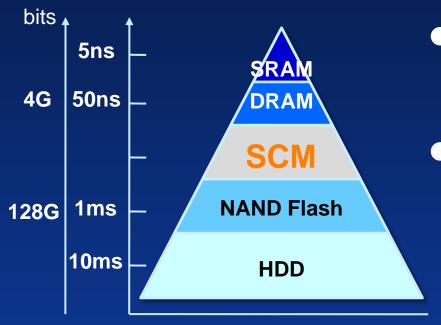



Increased Attention

- ReRAM technologies attract rising attention
- ReRAMs are expected as high density memories
 - Scaling
 - Cross point type

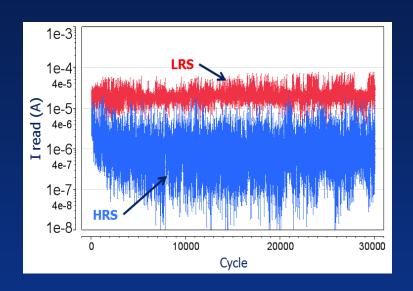
A total of papers in IEEE IMW, VLSI Symposium and ISSCC

	2012	2013
ReRAM	26	31
PCM	8	5
STT MRAM	13	13



SCM Requirement

Expected Future



- SCM is main application for ReRAM technologies
- SCM Requirement
 - PerformanceBetween DRAM and NAND
 - Density (bit cost)
 Between DRAM and NAND

In 2015, Key aspect is to realize at least 16 Gbit as the product

Need Dedicated Controller

- Noisy Signal
- To realize high density ReRAM, dedicated controller technology will be needed
 - High speed
 - Low redundancy

[1] K.Prall, et al., "An Update on Emerging Memory: Progress to 2Xnm", IMW 2012

> In the same manner as of expanding NAND market, Key aspect is ECC to handle the specific error

Thank you!

For questions, please contact
Amigo Tsutsui
Keiichi.Tsutsui@jp.sony.com