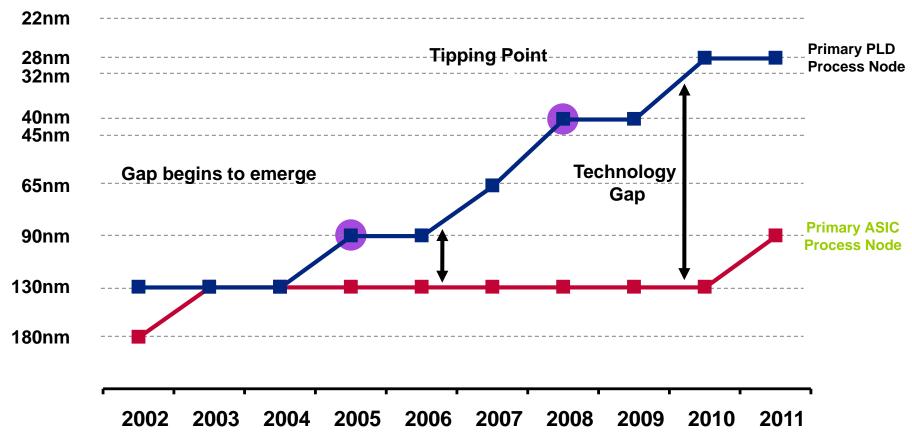


FPGAs and NVM types

PLD's Have Evolved!

The Lab

Prototyping 1-250 units


The Data Center

Production 10ku-1Mu

PLD Tipping Point vs. ASICs

PLDs Outstripping Traditional ASICs in Technology and Total Cost of Ownership

Source: Altera; data applies to new design starts.

CPLDs Lowest Cost, **Lowest Power**

FPGAs Cost/Power Balance Mid-range FPGAs

FPGAs SoC & Transceivers SoC & Transceivers

FPGAs Optimized for High Bandwidth

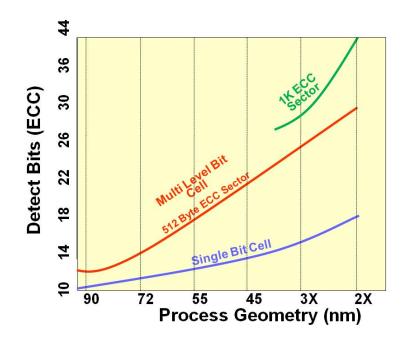
PowerSoCs High-efficiency **Power Management**

Embedded Soft and Hard Processors

> Nios[®] II **ARM**

Development Kits

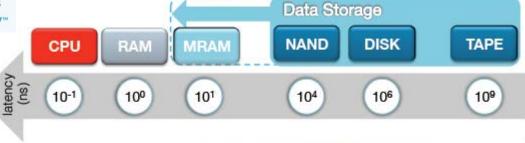
Intellectual Property (IP)


- Industrial
- Computing
- Enterprise

Flash Cache Challenges & Evolution

- Ongoing Challenges
 - Error correction cost increasing
 - Limited endurance (lifetime writes)
 - Slow write speed
 - SATA/SAS SSD interface is slow
- Storage over PCIe electricals
 - Faster than current SAS & SATA
 - SATA Express
 - NVM Express
 - HP SCSI Express
- Emerging flash technologies
 - Higher IOPS- more PCIe BW
 - MRAM (Magneto Resistive)
 - PRAM (Phase Change Memory)
 - RRAM (Resistive)
 - NRAM (Carbon Nanotube)

Flexibility Required to Support Flash Memory Emerging Memory Technologies


Spin-Torque MRAM – Next generation MRAM

Current generation MRAM uses a magnetic field for switching Limits scaling due to constant magnetic field

Next generation MRAM enables scaling to Gb densities Everspin on track to deliver industry's first \$T-MRAM

Toggle Write Spin-Torque Write

- HDD leveraged as capacity optimized data storage
 - : Lowest cost per GB/TB for data storage
 - Challenges: Random access, active power & power fail
- NAND SSD leveraged as performance optimized storage
 - : More IOPS, reduced latency & less overall power
 - Challenges: Write latency & variability, endurance, power fail
- ST-MRAM leveraged as non-volatile buffer/cache for storage
 - : DRAM like access, unlimited endurance & power fail Benefits
 - Challenges: New storage architecture, density & cost scaling

~1,000,000,000 operations/s

~100 operations/s

Enabling Technology- Programmable Logic Devices

- Design Logic support
 - Increasing densities to support system on chip (SOC) programmability
- Increased Computational Performance
- Reduced Power
 - Intelligent power management
 - Hardened IP blocks
- High Speed Serial Interface Support
 - Embedded Transceivers
- Supports multiple memory types in the storage hierarchy