

It's Time for Mass Scale VDI Adoption

Cost-of-Performance Matters

Doug Rainbolt, Alacritech

- Intro to Alacritech
- Business Motivation for VDI Adoption
- Constraint: Performance and Costs to Deliver
- Why Flash Memory Alone Isn't the Answer
- University of Portland Case Study
- Conclusions

- Founded in 1997 by Larry Boucher
- Inventors of Dynamic TCP Offload

- Technology incorporated into Appliance Solution
- Has always been centered on data acceleration
 - In purpose-built silicon + software
 - With minimal Server CPU

Business Motivation for VDI Adoption

- Alacritech-sponsored survey found:
 - 50% are already using VDI
 - 43% plan to purchase over next 12 months
- Business drivers, in order of importance
 - 1. Ease-of-management
 - 2. Data security
 - 3. Costs: capital, space, cooling, administration
- BYOD influences...
 - IT not thrilled about supporting tablets and smart phones
 - But when the CEO is a user...

- With the user experience being vital...
- IT must generate acceptable performance for users
 - Slow response times can doom the project
- While delivering acceptable cost-of-performance
 - If the project is too expensive, it's also doomed

Storage Impact on Cost of Performance

- Storage cost is a major component of cost-ofperformance
- Presenting real challenges to storage administrators
 - Randomness in IO patterns
 - Higher aggregate IOPS
 - Conventional hard drives are a constraint
- Is flash memory the answer?
- With flash memory, where is the bottleneck?

Imagine a Ferrari at a Stoplight...

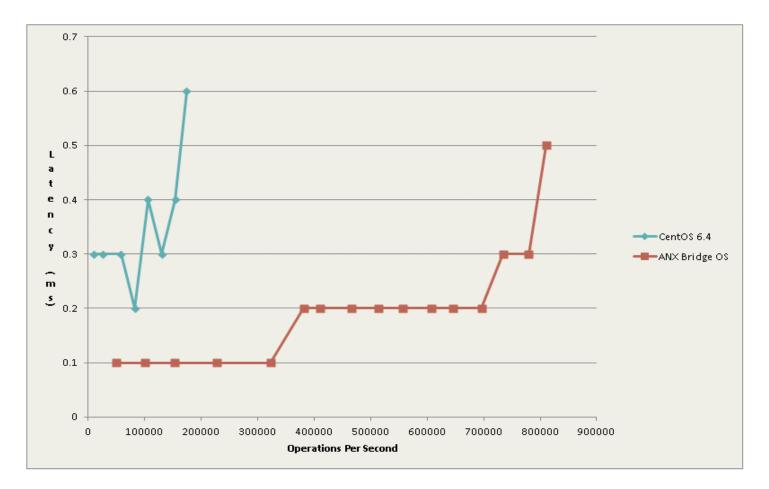
Flash Memory Summit 2013 Santa Clara, CA

Tracking the Bottleneck to Performance and Consequently Cost of Performance

- Remember why we virtualized servers...
 - Physical servers were being grossly underutilized
 - < 15% processor utilization was common</p>
- Processor-to-conventional-disk-drive performance gap
 - Disk drives were the bottleneck
- Enter flash memory...
 - Processors are no longer waiting for disk I/O
 - Higher IOPS are generated
 - Random access is 200 times faster
- What's not to like?

- In early fileserver design, the processor was the bottleneck
- In 1997 it was10 processors to 102 disk-drives
- But Moore's Law has proved true over a 12 year period!
 - Processor speeds increased by factor of 180
 - Disk drive speeds increased by a factor of 11
- Today's mid-range filer...
 - Require ~ 200 drives to saturate 2 processors
- Flash memory changed the rules overnight
- The bottleneck is once again the processor

- Simple test conducted:
 - Two identical servers
 - 2 Quad-Core Intel Xeon Processors @ 2.27 GHz
 - 96 GB of DRAM
 - 20 Gbps 400GB SSDs
 - One server equipped with Linux V6 CentOS and EXT 4 file system
 - Other server equipped with Alacritech NFS Bridge SW and 4 Alacritech 10GbE Accelerators



- Ran popular file serving benchmark using modified NFS mix
 - READ 22%
 - GETATTR 33%
 - LOOKUP 30%
 - ACCESS 14%
 - READLINK 1%
- Results:
 - Linux server achieved an impressive 174K OPS/s
 - Processors became saturated
 - Alacritech server achieved 810K OPS/s
 - 4-10GbE network accelerators became saturated
 - Processors only 35% busy

Test Results

Direct Implications on Cost of Performance

Why Not Add More Processors?

- Simply put, Amdahl's law applies:
 - The amount of performance improvement that can be realized by adding processors is based on the portion of a program that can be parallelized
- With NAS, a fair amount of processing can't be parallelized
- Most NAS systems can't take advantage of more than 8 processor cores before hitting the point of diminishing returns

- Made aggressive moves to virtual servers, networks and most recently desktops
 - Achieved a 50:1 virtual machine to physical host ratio
 - Data center is more than half empty
- Initially rolled out VDI to support ~ 200 on campus kiosks, labs, specific class rooms and studentsupplied thin-client devices
- Next wave was to roll VDI into state-of-the-art digital library and expand connections throughout campus
 - Support nearly 3,000 users

- Challenges:
 - NAS filers were experiencing performance bottlenecks
 - Read performance was suffering
 - Modest write %
 - But writes take precedence over reads
 - Contributed to read latency
 - Threatened the viability of the project
 - Used vendor's flash as cache with limited improvement
- Intermediate solution:
 - Install another vendor's array to support VDI reads/writes
 - 100% flash array
 - User initiated writes still handled by filer
 - Effective, but another array to manage
 - Also faced with \$160K additional SSD shelves

- Hypothesis:
 - Could NFS Acceleration Appliance be of help in
 - Functioning as a virtual read channel
 - Passing writes back to the older filer
 - Many OS generated and not read back
 - Delivering superior performance
 - Leveraging Flash with data acceleration
 - Inclusive of optimized TCP Offload
 - Delivering superior performance at less cost
 - If performance was significantly better
 - Could less expensive media be used behind the filer?
 - And could the filer be offloaded enough to provide performance for all supported/stored apps, not just VDI?

- Results:
 - Read latency improved by over 20%
 - Compared to pure flash array
 - Appliance listed for \$90K, compared to \$160K SSD drive shelf expansion
 - NFS Acceleration Appliance handled 90% of the requests
 - The appliance CPU < 15% busy</p>
 - Processor cycles given back to NAS so it can do more
 - Appliance has headroom to handle additional load
 - More VDI plus targeted to support database
 - University was able to use less expensive media
 - Using SATA in place of SAS
 - Anticipate total savings in first year to be \$200K
 - Forecast \$50K savings in storage costs each add'l year

- Successfully rolling out VDI requires being mindful performance and costs
- The use of flash memory can help increase IOPS
- But flash shifts the bottleneck back to the processor
- Using NFS acceleration appliances can
 - Provide data acceleration to a multitude of clients
 - Reduce latency
 - Drive the cost/IOPS considerably lower
 - Enable use of less expensive media behind the filer
 - Benefit all applications supported by filer
 - Simplify management
 - Help ensure a successful VDI rollout
 - Delivering on both performance and cost with gas to spare