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NAND Controller Architecture 
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NAND Controller Architecture 
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• Stronger ECC is required in the scaled NAND. 
• Low-density-parity-check (LDPC) ECC is needed. 
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Inter-cell Coupling 

• Floating gate (FG)-FG capacitive coupling significantly degrades 
memory cell reliability as the design rules shrink. 

• Direct field effect to channel is also observed. 
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Problem of Soft Decoding LDPC 
ECC 

• Log-likelihood ratio is input to LDPC decoder. 
• Increased number of Vref result in large seq. read cycle. 
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Objectives of This Work 

• To propose an error prediction (EP) LDPC 
ECC scheme without sequential read cycle 
increase to realize high reliability. 
 
 

• To propose error recovery (ER) scheme to 
further enhance reliability. 
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Proposed SSD Architecture 

Error 
prediction 

unit

Inter-cell coupling
information

N”1”initial is added
to the user data.

Error 
recovery 

sequencer

LDPC
decoder

Apply error recovery pulses.

Program

Read

Proposed 
error 

recovery 
(ER) scheme

No

Yes Error 
correction 

successful?

Initial data

Proposed EP-LDPC
architecture

TRetention
table

NW/E
table

EP 
table

Number of 
“1”s (N”1”initial) 

counter

LDPC
encoder

Ho
st

NA
ND

 flash m
em

ories

9 S. Tanakamaru et al., ISSCC, pp. 424-425, 2012. 



Outline 

• Introduction 
• Error Prediction (EP) LDPC scheme 

• Measurement results 

• Error Recovery (ER) scheme 
• Program disturb error recovery pulse 

(PDRP) 

• Data retention error recovery pulse (DRRP) 

• Summary & Conclusion 
 10 



Concept of the Proposed EP-LDPC 

•VTH information (x3)
•Inter-cell coupling information
• Write/erase cycles (NW/E)
• Retention time (TRetention)
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Program Sequence of the EP 
LDPC 

• To estimate BER of the lower pages, N“1” is counted and added 
to the program data. 

• N“1” is protected by triplicated BCH ECC. 
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Overall BER Estimation 

Data Retention Error: Ejection of electrons

Program Disturb Error: Injection of electrons
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BER & Retention Time Estimation 

• BER is estimated from the difference of the number of “1”-data. 
• Retention time is estimated from the table (BER vs. retention 

time). 
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Pre-recorded Tables (1) 
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Error Prediction 
• Error prediction is performed with EP table. 
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Pre-recorded Tables (2) 
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Acceptable Retention Time 
Extension 

• Acceptable retention time is measured with 2 code rates (9/10, 
2/3) and ECCs (BCH, EP-LDPC). 
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Improvement of Acceptable BER 
• Acceptable BER is measured with 2 code rates (9/10, 2/3) and 

ECCs (BCH, EP-LDPC). 
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Improvement of Acceptable W/E 
Cycles 

• Acceptable W/E cycles is measured with 2 code rates (9/10, 2/3) 
and ECCs (BCH, EP-LDPC). 
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Flow of Error Recovery Scheme 
N”1”initialN”1”measured

Error mode detection

Apply data 
retention error 
recovery pulse

(DRRP)

Apply program 
disturb error 

recovery pulse
(PDRP)

Program disturb 
error is dominant

(N”1”initial>N”1”measured)

Data retention
error is dominant

(N”1”initial<N”1”measured)

When LDPC decoding fails…

Read again and set as a bad block 23 



Program Disturb Error Recovery 
Pulse (PDRP) 

• Electrons at the interface between control gate (CG) and inter-
poly dielectric (PD) are de-trapped with PDRP. 
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Measurement results of PDRP 
• Program disturb BER is reduced by 76% by PDRP. 
• The recovered data is read about 10ms after PDRP. 
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Transient Behavior after PDRP 

• BER with PDRP converges to the BER without PDRP. 
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Data Retention Error Recovery 
Pulse (DRRP) 

• Electrons are injected to the floating gate with DRRP. 
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Measurement results of DRRP 

• Data retention BER is reduced by 56% by 500-times DRRP. 
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SSD Photograph 
NAND controller NAND flash memories

SATA controller
S. Tanakamaru et al., ISSCC, pp. 204-205, 2011. 30 



Summary of Key Features (1) 
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Summary of Key Features (2) 
Conventional SSD Proposed SSD

Program disturb
error recovery None PDRP (-76%)

Data retention
error recovery None DRRP (-56%)
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Conclusion 

• Highly reliable solid-state drive (SSD) is 
proposed with two key techniques. 

• Error-prediction (EP) LDPC architecture is 
proposed. 

• By estimating the BER of each memory cell 
with the pre-recorded tables, acceptable 
retention time increases by over 10-times. 

• Error-recovery (ER) scheme is proposed. 
• Bit error is reduced by 76% with error-

recovery pulses. 
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