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Module 1: LDPC Decoding



Overview

� Error Correction Codes (ECC) 

� Intro to Low-density parity-check (LDPC) Codes

� ECC Decoders Classification

• Soft vs Hard Information 

� Message Passing Decoding of LDPC Codes 

� Iterative Code Performance Characteristics
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Error Correction Codes (ECC)
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Error Correcting Codes (ECC)

0000
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
1101
0011
1011
0111
1111

0000000
1101000
0110100
1011100
1110010
0011010
1000110
0101110
1010001
0111001
1100101
0001101
0100011
1001011
0010111
1111111

4-bit message 7-bit codeword

4-bit message space 7-bit codeword space

User message bits
Parity bits 

(redundancy)

0010000

0000000

Rate = 4 / 7

7-bit word space
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Linear Block Codes

� Block Codes

• User data is divided into blocks (units) of length K bits/symbols

• Each K bit/symbol user block is mapped (encoded) into an N bit/symbol codeword, 

where N > K

• Example: 

– in Flash Devices user block length K = 2Kbytes or 4Kbytes is typical

– code rate R = K / N is usually ~0.9 and higher 

� Important Linear Block Codes

– Reed-Solomon Codes (non-binary)

– Bose, Chaudhuri, Hocquenghem (BCH) Codes (binary)

– Low Density Parity Check (LDPC) Codes

– Turbo-Codes
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Iterative (ITR) Codes

1u 2u 3u 4u
5u
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Generator Matrix and Parity Check Matrix

� A linear block can be defined by a generator matrix

� Matrix associated to G is parity check matrix H, s.t. 

• A vector is a codeword if

� A non-codeword (codeword + noise) will generate a non-zero vector, which is called 

syndrome

� The syndrome can be used in decoding
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Example
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Low-Density Parity-Check (LDPC) Codes

David MacKay
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LDPC Codes

� LDPC code is often defined by parity check matrix H
• The parity check matrix, H, of an LDPC code with practical length has low density (most 

entries are 0’s, and only few are 1’s), thus the name Low-Density Parity-Check Code 

� Each bit of an LDPC codeword corresponds to a column of parity check matrix

� Each rows of H corresponds to a single parity check

• For example, the first row indicates that for any codeword the sum (modulo 2) of 
bits 0,1, and N-1 must be 0

bit 0 bit 1 bit N-1
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ECC Decoder Classification: 
Hard vs Soft Decision Decoding
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Hard vs. Soft Decoder Classification

� Hard decoders only take hard decisions (bits) as the input

• E.g. Standard BCH and RS ECC decoding algorithm (Berlekamp-Massey 

algorithm) is a hard decision decoder 

� Hard decoder algorithm could be used if one read is available

EDC
encoder

BCH
encoder

EDC
decoder

BCH
decoder

Front End
/ Detection

Hard decisions {1,0}

decoder
010101110 010101010
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Hard vs. Soft Decoder Classification

� Error-and-Erasure decoder is a variant of soft information decoder: in addition 
to hard decisions, it takes erasure flag as an input

� Error-and-Erasure decoder algorithm could be used if two reads are available

EDC
encoder

encoder

EDC
decoder

“error-and-

erasure”

decoder

decisions {1,0,*}

decoder
010101**0 010101010

Front End
/ Detection
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Hard vs. Soft Decoder Classification

� Erasure flag is an example of soft information (though very primitive)

� Erasure flag points to symbol locations that are deemed unreliable by 

the channel

� Normally, for each erroneous symbol, decoder has to determine that 

the symbol is in error and find the correct symbol value. However, if 

erasure flag identifies error location, then only error value is unknown

� Therefore, erasure flag effectively reduces number of unknowns that 

decoder needs to resolve
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Hard vs. Soft Decoder Classification

� Example. Rate 10/11 Single parity check (SPC) code

• Each valid 11-bit SPC codeword c=(c0,c1,…c10) has the sum (mod 2) of all the 
bits equal to 0

• Assume that (0,0,0,0,0,0,0,0,0,0,0) is transmitted, and (0,0,0,0,1,0,0,0,0,0,0) is 
received by decoder

• The received vector does not satisfy SPC code constraint, indicating to the 
decoder that there are errors present in the codeword

• Furthermore, assume that channel detector provides bit level reliability metric in 
the form of probability (confidence) in the received value being correct 

• Assume that soft information corresponding to the received codeword is given 
by (0.9,0.8,0.86,0.7,0.55,1,1,0.8,0.98,0.68,0.99) 

• From the soft information it follows that bit c4 is least reliable and should be 
flipped to bring the received codeword in compliance with code constraint
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Obtaining Hard or Soft Information 
from Flash Devices
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One Read: Hard Information

� Obtaining hard information (decision) via one read 

� One VREF threshold is available: Threshold value should be selected so that the 

average raw bit-error-rate (BER) is minimized 

� In each bit-location, the hard-decision hd = 0 or hd = 1 is made  

� This information can be used as input into decoder  

� Shaded area denotes the probability that a bit error is made 

VREF
Decision bin

hd = 1
Decision bin

hd = 0



Multiple Reads: Soft Information

� Obtaining soft information via multiple reads 

• Create bins 

• Bins can be optimized in terms of their sizes / distribution of VREF values 
given the number of available reads (e.g. 5 reads) 

• These bins can be mapped into probabilities

• Typically, the closer the bin to the middle point, the lower the confidence 

that the bit value (hard-read value) is actually correct
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VREF 1

Decision bin

B1

Decision bin

A1
Decision 

bin C0

Decision bin

A0
Decision 

bin C1

VREF 2 VREF 4VREF 5 VREF 3

Pr(bit=1) = 90% Pr(bit=1) = 55%Pr(bit=1) = 65%

Pr(bit=0) = 55% Pr(bit=0) = 90%Pr(bit=0) = 65%
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ITR Decoders with Soft Information
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Decoding LDPC Codes
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Representation on Bi-Partite (Tanner) Graphs

variable nodes

encoded bits

check nodes

parity check constraints

Each bit “1” in the parity check matrix is represented by an edge between 

corresponding variable node (column) and check node (row)
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Hard Decision Decoding: Bit-Flipping Decoder

� Decision to flip a bit is made based on the number of unsatisfied checks 

connected to the bit

1 10 010

0 011 1 00

First step

1

End of first stepSecond step

0

0

Valid 
codeword

01

Examine number of unsatisfied check neighbors for each bitThe left-most bit is the only bit that has 2 unsatisfied check neighborsFlip the left-most bitExamine number of unsatisfied check neighbors for each bitThe second bit from the left is the only bit that has 2 unsatisfied check neighborsFlip the second bit from the left

21



Bit-Flipping Decoder Progress on a Large 
LDPC Code

� Decoder starts with a relatively large number of errors 

� As decoder progresses, some bits are flipped to their correct values

� Syndrome weight improves

• As this happens, it becomes easier to identify the bits that are erroneous and 
to flip the remaining error bits to actual (i.e. written / transmitted) values 
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Soft Information Representation

� The information used in soft LDPC decoder represents bit reliability metric, 

LLR (log-likelihood-ratio)

� The choice to represent reliability information in terms of LLR as opposed 

to probability metric is driven by HW implementation consideration

� The following chart shows how to convert LLRs to probabilities (and vice 

versa) 










=

=
=

)1(

)0(
log)(

i

i
i

bP

bP
bLLR

23



Soft Information Representation

� Bit LLR>0 implies bit=0 is more likely, while LLR<0 implies bit=1 is more likely

-100 -80 -60 -40 -20 0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LLR

P
(b

l=
1
)

)0( =ibP

24



Soft Message Passing Decoder

� LDPC decoding is carried out via message passage algorithm on the 
graph corresponding to a parity check matrix H

� The messages are passed along the edges of the graph

• First from the bit nodes to check nodes

• And then from check nodes back to bit nodes
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Soft LDPC Decoder

� There are four types of messages

• Message from the channel to the n-th bit node

• Message from n-th bit node to the m-th check node

• Message from the m-th check node to the n-th bit node

• Overall reliability information for n-th bit-node at the end of iteration
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Soft LDPC Decoder (cont.)

� Message passing algorithms are iterative in nature

� One iteration consists of 

• upward pass (bit node processing/variable node processing): bit nodes 
pass the information to the check nodes 

• downward pass (check node processing): check nodes send the 
updates back to bit nodes

� The process then repeats itself for several iterations 
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Soft LDPC Decoder (cont.)

� Bits-to-checks pass:                : n-th bit node sums up all the information it has 
received at the end of last iteration, except the message that came from m-th
check node, and sends it to m-th check node

• At the beginning of iterative decoding all R messages are initialized to zero
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Soft LDPC Decoder (cont.)

� Checks-to-bits pass:

• Check node has to receive the messages from all participating bit nodes 

before it can start sending messages back

• Least reliable of the incoming extrinsic messages determines magnitude of 

check-to-bit message.  Sign is determined so that modulo 2 sum is satisfied
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Soft LDPC Decoder (cont.)

� At the end of each iteration, the bit node computes overall reliability information 
by summing up ALL the incoming messages

� ’s are then quantized to obtain hard decision values for each bit

� Stopping criterion for an LDPC decoder

• Maximum number of iterations have been processed OR

• All parity check equations are satisfied
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LDPC Decoder Error Correction: Example 1

� 1st iteration:

+4

m = 2m = 1m = 0

+4

+4
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LDPC Decoder Error Correction: Example 1

� APP messages and hard decisions after 1st iteration: 

m = 2m = 1m = 0

+4 -4

-7 +4
-7

-4 -10

-4
+4

+4-12+7-9 +7 +10 -11

-5 +3 -8 -20 +3 +6 -7P:

HD: 1 0 1 1 0 0 1

Valid codeword (syndrome = 0)
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LDPC Decoder Error Correction: Example 2

� 1st iteration:
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LDPC Decoder Error Correction: Example 2

� 2nd iteration:
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LDPC Decoder Error Correction: Example 2

� APP messages and hard decisions after 2nd iteration: 

-4-12-7-9 +7 +10 -11

-2 +2 -19 -14 +14 +14 -15P:

HD: 1 0 1 1 0 0 1

Valid codeword (syndrome = 0)

m = 2m =  1m = 0
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+7 -7
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+7 -10

+4
-4
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Sum-Product and Min-Sum Decoders

� Sum-Product: Optimal update rules at the check nodes request implementation 
of fairly complex tanh() function and its inverse

� Instead of these update rules, simple approximate rules have been devised: The 
rules require only computing minimum messages at each check node

• In order to make approximation work, it is necessary/critical to utilize 
scaling/offsetting of messages from check to bit nodes 

� This algorithm is widely known as min-sum with scaling/offset and is often 
choice of implementation in Hardware 
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Histogram of LLRs on Large LDPC Codes

� LDPC min-sum decoder on AWGN channel 

� One critical advantage of soft (min-sum) decoder is that it can utilize the 

information on bits provided by several reads 

� Using multiple reads reveals additional information for each individual bit 

position (bin allocation / LLR mapping) 

� Soft decoder could start with a fairly large number of LLRs with incorrect signs 
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Histogram of LLRs on Large LDPC Codes

� Soft decoder could start with a fairly large number of LLRs with incorrect signs 

� Decoder takes advantage of the original soft information and improves the information 
on some bits during the initial iteration

� As iterations progress, propagation of improved information continues.  This reduces 
the number of bit positions with incorrect LLR signs (hard-decisions)

� Eventually, all bit positions receive correct sign of LLRs: at this point the syndrome will 
verify that a valid codeword is found and decoder can terminate   
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Performance / Complexity Trade-Offs 

Fixing throughput/latency &  

increasing parallelism in 
implementation
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� The choice of number of iterations is typically made 
with consideration of the following parameters: 

� Throughput / Latency 

� SNR performance (Capacity gain) 

� Implementation Complexity 

� Power Consumption

System 
Performance

Throughput 

& Latency

SNR 
performance 

(Capacity gain)

Implementation 
Complexity

Power 
Consumption



Code Design, Code Performance Characteristics 
and Efficient Hardware
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Quasi-Cyclic LDPC Codes

� Generally, structure of the matrix needs to accommodate easier HW 
implementation 

� Typical approach is to use quasi-cyclic LDPC codes 

� With such matrix structures, row/column processing in decoding can be parallelized, 
e.g. process P variable/check nodes in a single clock cycle

� The same processors could be utilized with scheduling and memory addressing 
handling different portions of the parity check matrix in different clock cycles  
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1

1
1

1

P

P
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Layered / Flooding Decoder

� Updates of messages may be done in a “flooding” fashion or in a layered (serial) 

fashion 

� Both of these decoders benefit from structured matrices that naturally allow for 

parallel processing of a portion of the matrix, i.e. parallel processing of some 

number of rows / columns in the matrix 

� The main difference in layered decoding approach is that the information is 

utilized in serial fashion: New messages are utilized during the current iteration, 

as opposed to the flooding decoder that obtains new information on all nodes 

exactly once in each iteration

� It has been demonstrated that layered/serial decoder can converge in about ½ 

of the number of iterations needed by flooding decoder 
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LDPC Iterative Decoder 
Performance Characteristics
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RS-ECC Performance Characterization

� RS ECC performance is completely determined by its correction power t (in 

symbols)

� For example, RS ECC with correction power t = 16 symbols. 

• This code is capable of correcting up to 2t = 32 symbols of erasure. There is 

no restriction on the erasure symbol locations within a sector.

• The code is capable of correcting t = 16 symbol errors regardless of type and 

location.  

� Sector failure rate of RS ECC keeps falling at exponential rate with SNR increase

• No flattening of SFR vs. SNR curve is observed at higher SNR’s
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LDPC Decoder Performance Characterization

� LDPC ITR decoder correction guarantees

• Little to no deterministic performance 

guarantees are provided by the code

• Error correction is probabilistic

– Code is capable of fixing hundreds of 

bit errors, but may fail (with small 

probability) even if there are only few 

bit errors present

• Decoder implementation (e.g. quantization of 

messages) is just as important to the final 

performance as code design

– For a fixed ITR code, the differences 

in decoder implementation can have 

significant effect on overall 

performance

SyER/SFR

SNR [dB]

waterfall region

error floor region

LDPC system

operating

region

Poor decoder implementation 

might result in high error floor 

LDPC RS/BCH
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LDPC ITR Decoder Error Rate Characteristics

� Waterfall region

• BER/SFR drops rapidly with small change in SNR

� Error Floor (EF) region (High SNR region)

• BER/SFR drop is much slower

� Specific structures in the LDPC code graph lead to decoding errors at high SNRs

• structures known as Near-Codewords (trapping sets) are dominant in the EF region

SyER/SFR

SNR [dB]

waterfall region

error floor region

LDPC system
operating region

LDPC RS/BCH
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Mitigating Error Floor of LDPC Code

� Code design can be tailored to 

achieve the error floor bellow 

HER requirements

� Another strategy to push error 

floor to desired levels is via 

post-processing methodologies
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Summary

� Iterative LDPC codes can enable FLASH industry to hit new capacity milestones

� Types of Decoders:

• Hard: Bit-Flipping Decoders

• Soft: Sum-Product (Min-Sum) Decoders

� Soft message passing decoders offer large SNR gains – this translates to 

capacity gains 

� Optimized ITR codes/decoders are known to deliver performance near the 

theoretical limits in the channels dominated by random noise, e.g. AWG noise

� Handling the error floor phenomenon in ITR decoders

• Code matrix design  

• Decoder design 

• Post-processing  
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APPENDIX

49



LDPC Iterative Error Rate Characteristics

� In “high-SNR” region, dominant errors are near-codewords (trapping sets) 

� As the name suggests, near-codewords look similar to true codewords. 

• More precisely they have low syndrome weight – violating only few of the 

parity check equations

• Recall that a valid codeword has syndrome weight of 0

� Iterative decoder gets trapped into one of NCW’s, and is unable to come out of 

this steady state (or oscillating state)

• Even if decoder has time to run 100’s of iterations, it would not be able to 

come out of the trapping set

50



Code Selection

� Optimizing code/decoder selection 
based on the performance at low 
SNR’s only may lead to impractical 
code selection.

� There is a trade-off to be made 
between performance at low SNR’s, 
defect correction, and error floor 
(performance at high SNR’s)
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Mis-Correction in LDPC Decoding
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Minimum Distance of a Code

� The minimum of all the distance between any two code words is called the 

minimum distance of the code, denoted by dmin

dmin
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Decoder Miscorrection

� Miscorrection: For an error correcting code, when the received sequence 
falls into the decoding area of an erroneous code word, the decoder may 
deliver the wrong code word as the decoding result.

Received sequence

Erroneous code word

transmitted code word

Decoder Error

54



Iterative Error Rate Characteristics

� Production grade devices will operate in the Error Floor region (High SNR 

region)

• Dominant Error Events in error floor region are near-codewords

• Mis-correction is much lower probability event than dominant near-

codewords 
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LDPC system
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