
SNIA NVM Programming Model:
Optimizing Software for NVM

Paul von Behren
Intel Corporation

SNIA NVM Programming TWG co-chair

Objectives / Overview

 Provide a glimpse of
• How various types of software utilize today's

NVM
– No software experience necessary!

• Software impact of enhancements for SSDs
• Approaches for SW to utilize persistent

memory
• The SNIA NVM Programming Model

 Wrap-up

NVM Programming Model Goals

 NVM vendors (and standards) extending HW
features
• Often driven by application developer requests
• Which dives a need for new/updated software interfaces

 Encourage a common software ecosystem
• Without limiting ability to innovate

 SNIA is creating the NVM Programming Model
• Published spec describing high level approach to using NVM

in software
• Stopping short of defining an API
• More details about this spec later

Today's Disk IO Stack

 SSDs treated (nearly)
identically to HDDs
• disk refers to HDD or SSD

 Diagram depicts IO (not
management) transactions

 Depicts control (not data)
flow
• Examples will look at data flow

 Control flows top-to-bottom
• app sends IO command to file

system,
• flows through layers until, …
• driver sends commands to

disks

Applications

File Systems

Virtual Disk Services
(SW RAID, volume manager, …)

Disk (and HBA) Drivers

HDDs SSDs

 User Space
Kernel Space

Kernel Space
Hardware

Programming impact - starting at
the bottom of the stack (drivers)

 Where software addresses SCSI, ATA, NVMe and
vendor-specific commands to HW
• HW commands are out of scope for the NVM Programming

Model

 Drivers provide a HW-independent (OS-specific) API
to other kernel components
• Common abstraction to all disks
• An important interface for the programming model

– The block mode discussed later

• API serves as a front-end to DMA operations moving data
between memory to disks

Middle of the stack – non-driver
kernel components

 Kernel disk consumers utilize block mode to
move data between memory and disks
• They do not use HW (e.g., SCSI) commands

 Primary kernel disk consumer is file systems
• File systems provide byte-addressable, hardware-

independent interface (file mode) to applications
 Kernel hibernation logic also uses block

mode

Applications – top of the stack

 File mode - applications view storage as either
• byte- addressable files (basic apps)
• ranges of blocks in files (advanced block-aware apps)

 Basic approach use by most applications
• File systems hide block alignment and provide cache
• Transparent cache masks flush to disk

 Block-aware approach disables file system cache
• Provide ability to assure data is flushed to disk
• Application must handle block/MMU-page alignment
• Frequently used by mission-critical apps

What we mean by mode

 Modes are approaches taken by certain classes of
software
• Not strictly defined in programming languages – more of a

tactic rather than an API
• In stack diagram – modes consist of the commands/behavior

between layers in the stack
– Add level abstraction to SW higher in the stack

 The exact commands (APIs) vary across OSes, but
the concepts are similar
• As used here, "programming mode" discusses the behavior

without using a specific API
 Many modes (and variants)

• We will look at commonly used modes

Memory Access Programming Mode
(also known as "load/store access")

 Application uses volatile memory as a temporary
place to store data

 Applications processes data using CPU registers

 Language run time environment hides the

CPU/memory boundary
• The program defines variables to hold data (this allocates

memory)
• Later when the program modifies the variables, the run-time

environment loads data to CPU registers, modifies it, and
stores it back to memory

Memory Access Example

 Consider an application that does not use storage – app
displays the system temperature read from a sensor
• The application allocates memory by defining variables to hold

the data read from the sensor and the space needed to create
a human-readable message

• Application reads sensor data into variables (memory)
• The sensor reports the temperature relative to a sensor-specific

offset; the application adjusts by the offset
– Variable/memory contents loaded to CPU register, modified, and

stored to memory
• The application uses the adjusted temperature to create a

message
– Again, load variable to CPU register, modify, then store back to

memory
• The temperature is not saved to disk by this application

File programming mode for disks

 Load/Store access still applies
 To assure the data is durable across system and application restarts,

applications write the selected memory contents to files (persisted to
disk)

 Hidden from application, the file system utilizes a cache (also stored in
volatile memory) to improve access to disks

 The application is told a write command is complete as soon as the
data is copied to FS cache; write to disk happens later

 A read command may require a disk I/O is requested blocks are not
already in cache

Basic file mode example

 Prerequisites
• Basic application to update one record (of many) residing on

disk; the records are not aligned on block boundaries
• User provides the info needed to update the record

 App allocates memory to hold the record
 App asks FS to read the record by file name, address

within the file, length, and allocated memory address
• FS may need to read blocks containing the record into FS

cache; then the record is copied to app's memory
 App modifies the record in memory
 App asks the FS to write the record to same location

• FS may need to read blocks to FS cache. The app's record in
memory is copied to FS cache and a write-to-disk is requested

 App exits, record may not have been written to disk (yet)

Block-aware application mode

 Application goals include optimized performance and/or
control over actual commit to disk

 Application disables file system cache
• App aligns IO requests to MMU page sizes
• App may manage its own cache

 Note: Although most apps use basic mode, block-aware

apps are often critical to businesses
• databases, HPC, big data
• may drive storage purchase decisions

Block-aware Application Example

 Update a record on disk
 Prerequisites

• Same as before: the records are not aligned, user provides info
required to update the record

 App allocates memory to hold all the blocks containing the
record
• Record may not start or end at block boundary

 App asks the FS/driver to read records to memory
 App updates the record in memory
 App asks the FS/driver to write blocks to same location on

disk
 (unlike basic example), record has been written to disk

Memory Mapped Files

 Application maps a file to virtual memory
• App asks FS to mirror virtual memory and disk

blocks
 Application does not do FS read/write

commands
• Requests to update mapped virtual memory cause

FS to issue disk IO in the background
• App may issue sync commands to force

synchronization
 Often used by block-aware applications

Emerging NVM extensions

 The modes previously described apply to all
HDDs and SSDs

 What NVM-specific extensions are in the
works?
• Trim/Unmap
• Atomic writes
• Discovery of granularities
• Persistent memory modes

Trim/Unmap background

 Trim(ATA)/Unmap(SCSI) commands already
in place, but are good examples of
commands (partially) specific to SSDs

 On HDDs, each SW write to block # X is
directed to the same physical block
• Ignoring infrequent block reallocation
• The same block can be rewritten frequently
• HDDs don't require a command for SW to say "I'm

done with these blocks" – SW stops doing IO until
something triggers reuse of the blocks

Trim/Unmap background (continued)

 On SSDs, a block must be erased prior to being re-written
• Erases are time-consuming, background garbage collection (GC) minimizes

latency to subsequent write commands
• Erasing is done on (device-specific) groups of blocks; GC logic will relocate

non-erased blocks in order to fee up an entire group

 Pre-Trim, SSDs didn't have enough info to differentiate valid
blocks from blocks that SW knows will never be read

• E.g. admin created a partition; moved contents to a larger partition; and not
(yet) reused the old space.

 Trim allows SW to give hints to SSD garbage collection
• No need for GC to move trimmed blocks
• May free up entire group for erase without moving any blocks
• Or at least minimize the number of moves
• Moving blocks may cause additional erases, which reduces endurance

Trim/Unmap – the extension

 Proposals to improve SCSI Unmap
• NVM Programming Model proposes SW extensions based

on SCSI committee proposal
• Original implementations were hints to SSDs – not clear

what to expect if a different app read an unmapped block
– Access to data that should be protected?
– All zeros?

• Proposal - more specific about the behavior of subsequent
reads

– Allow options, but let SW determine (and optionally control) which option
is in effect

• Also, a new command to get the status of a block

Atomic Writes

 Mission-critical applications have strategies to write data in a
way that allows graceful recovery after power (or other) failures

• Worst-case problem: torn write – part (but not all) of the data being
written is on the disk after a failure

 Atomic Writes ensure that operations are completed in their
entirety or not at all
• Highly desired feature from application developers

 Some devices have a write atomicity unit
• writes of this size or smaller are considered atomic

 Other devices have atomic write commands
• may also provide assurances about ordering relative to other

commands

Discovery of granularities

 SSDs often have 4096 byte blocks, but claim to have
512 byte blocks for compatibility

 SSDs allow applications to discover logical and
physical block size
• But definitions of "logical" and "physical" are fuzzy

 Applications may wish to know
• Atomic write unit (if supported)
• ECC size (in case of ECC failure, all bytes in this range

become unavailable)
• Granule SW should use to avoid read-modify-write inside

SSD

Persistent Memory (PM)

 From a SW perspective: PM hardware is accessed by SW
similarly to systems memory, but contents are preserved across
restarts
• PM may be physically like system memory – e.g. NVDIMMs
• May be PCIe card with appropriate driver/flash-translation-layer

 At this time, PM hardware is relatively expensive and tends to
be designed for special-purpose applications

 It seems inevitable that prices will drop ands PM will be viable
for general-purpose application use

 Which leads to the question – how should SW access PM?

Potential SW views of PM

 One approach is to use PM like an SSD – provide a
driver that allows apps to use the existing file and
block-aware modes
• Existing apps work unmodified

 Recall disk stack diagram – drivers provide common
abstraction to disks
• A driver can be used to make a PM address range appear to

be a disk

 Existing file systems and applications should work
without modification

Disadvantages of PM emulating disks

 Memory does not have blocks and memory-to-memory
transfers don't require MMU page alignment; minimize
size access tied to CPU cache line (typically 8 bytes)
• Consider an application updating a 16-byte field
• With a disk emulation mode, the file system reads 4096 bytes,

modifies the 16-byte filed, then writes 4096 bytes

 Memory does not have HDD latencies
• Minimal benefit in read-ahead or grouping writes
• No benefit in using file system cache

New programming mode for PM

 Recall the file and block mode examples; the
application:
• allocates "empty" volatile memory from pool
• reads content from disks into memory
• uses load/store mode to manipulate data in memory
• writes selective memory contents to disk for persistence

 Redo as a PM-aware programming mode: the
application

• accesses the same PM it used previously
• uses load/store mode to manipulate data in memory
• That's it! No need to move data to/from disk (real or emulated)

New programming mode for PM

 From application perspective, this PM-aware mode is similar to
memory-mapped files

• File systems (mostly) hide the synchronization between memory and disk
• Provide sync command so application can flush pending write to disk

 Tricky bit: allowing the application to access the same memory it
used previous
 Also, prevent unauthorized access to memory content

 Proposal: use a file system as a way to name PM
regions
 Provides access control – existing tools and procedures for

controlling file access apply
 Existing applications using memory mapped files require

minimal changes to use this approach

Key takeaways for Programming SSDs

 SSDs "mostly" treated like disks
 Most SW treats disk storage in a HW-

independent approach
• Applications operate on files (byte

addressable) or block ranges within
files

• Kernel components (file systems, …)
operate on block ranges (MMU page
size granularity)

 Knowledge of disk hardware (SCSI,
ATA, vendor-specific, …) limited to
disk drivers

Applications

File Systems

Virtual Disk Services
(SW RAID, volume manager, …)

Disk (and HBA) Drivers

HDDs SSDs

 User Space
Kernel Space

Kernel Space
Hardware SCSI, ATA, … commands

Key takeaways for PM

 PM-aware software benefits from a
leaner stack - depicted to the left
• Path using PM-Aware File System

needed
– To verify app is allowed to access PM file
– When app uses file operations

• Load/Store between app and PM has
minimal overhead

 PM may be treated like a legacy SSD
• PM vendor provides a disk driver to the

disk stack on the previous slide
• Compatibility with existing applications

and file systems

PM-aware
Application

PM-Aware
File System

Kernel PM
Module

File commands

 User Space
Kernel Space

Kernel Space
Hardware

PM Devices

Load/Store
operations

Wrap Up

 SNIA's NVM Programming Model
• Proposing ways for SW to utilize NVM extensions

– Including proposals for utilizing emerging persistent
memory

• Spec organized in terms of Modes presented here
• Draft specification now available for public review

 More info…
• TWG portal page with link to draft:

http://snia.org/forums/sssi/nvmp
• Questions/comments? nvmptwg-info@snia.org

http://snia.org/forums/sssi/nvmp
mailto:nvmptwg-info@snia.org

	SNIA NVM Programming Model: Optimizing Software for NVM
	Objectives / Overview
	NVM Programming Model Goals
	Today's Disk IO Stack
	Programming impact - starting at the bottom of the stack (drivers)
	Middle of the stack – non-driver kernel components
	Applications – top of the stack
	What we mean by mode
	Memory Access Programming Mode�(also known as "load/store access")
	Memory Access Example
	File programming mode for disks
	Basic file mode example
	Block-aware application mode
	Block-aware Application Example
	Memory Mapped Files
	Emerging NVM extensions
	Trim/Unmap background
	Trim/Unmap background (continued)
	Trim/Unmap – the extension
	Atomic Writes
	Discovery of granularities
	Persistent Memory (PM)
	Potential SW views of PM
	Disadvantages of PM emulating disks
	New programming mode for PM
	New programming mode for PM
	Key takeaways for Programming SSDs
	Key takeaways for PM
	Wrap Up

