Coding for Unreliable Flash Memory Cells

Ryan Gabrys, Lara Dolecek

Laboratory for Robust Information Systems (LORIS) Department of Electrical Engineering, UCLA

- 2 Empirical Data
- 3 Data Analysis
- 4 Error-Correction Model
- 5 Performance Results

6 Conclusion

Flash Memory Basics

• Flash memory is comprised of a set of floating gate cells.

ション ふゆ メ キャ キャ マ ちょうく

Flash Memory Basics

- Flash memory is comprised of a set of floating gate cells.
- Information is stored by controlling the number of electrons stored within each cell.

Flash Memory Basics

- Flash memory is comprised of a set of floating gate cells.
- Information is stored by controlling the number of electrons stored within each cell.
- Density Per Cell

Flash Memory Basics

- Flash memory is comprised of a set of floating gate cells.
- Information is stored by controlling the number of electrons stored within each cell.
- Density Per Cell
 - Single-Level-Cell (SLC) 1 bit per cell.

Flash Memory Basics

- Flash memory is comprised of a set of floating gate cells.
- Information is stored by controlling the number of electrons stored within each cell.
- Density Per Cell
 - Single-Level-Cell (SLC) 1 bit per cell.
 - Multiple-Level-Cell (MLC) 2 bits per cell.

Flash Memory Basics

- Flash memory is comprised of a set of floating gate cells.
- Information is stored by controlling the number of electrons stored within each cell.
- Density Per Cell
 - Single-Level-Cell (SLC) 1 bit per cell.
 - Multiple-Level-Cell (MLC) 2 bits per cell.
 - Triple-Level-Cell (TLC) 3 bits of information per cell.

Flash Memory Basics

- Flash memory is comprised of a set of floating gate cells.
- Information is stored by controlling the number of electrons stored within each cell.
- Density Per Cell
 - Single-Level-Cell (SLC) 1 bit per cell.
 - Multiple-Level-Cell (MLC) 2 bits per cell.
 - Triple-Level-Cell (TLC) 3 bits of information per cell.

Mapping Information to Voltage Levels in TLC

- Center Significant Bit CSB
- Least Significant Bit LSB

Low Voltage

Data Collection

• On the first of every 100 P/E cycles the following was performed:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- On the first of every 100 P/E cycles the following was performed:
 - Erase the block. (block= 2^{20} cells)

ション ふゆ メ キャ キャ マ ちょうく

Data Collection

- On the first of every 100 P/E cycles the following was performed:
 - Erase the block. (block= 2^{20} cells)
 - 2 Read back the errors.

Data Collection

- On the first of every 100 P/E cycles the following was performed:
 - Erase the block. (block= 2^{20} cells)
 - 2 Read back the errors.
 - Write random data.

Data Collection

- On the first of every 100 P/E cycles the following was performed:
 - Erase the block. (block= 2^{20} cells)
 - 2 Read back the errors.
 - Write random data.
 - Read back the errors.

Data Collection

- On the first of every 100 P/E cycles the following was performed:
 - Erase the block. (block= 2^{20} cells)
 - 2 Read back the errors.
 - Write random data.
 - ④ Read back the errors.
- On the other 99 cycles, the block was erased and all-zeros were written.

Raw Error Rate

Observation 1: Error Patterns Within a Symbol

Number of bits in symbol that err	Percentage of errors
1	0.9617
2	0.0314
3	0.0069

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Observation 2: Unreliable Flash Cells

• We organized the Flash cells into two categories:

Observation 2: Unreliable Flash Cells

- We organized the Flash cells into two categories:
 - **1** reliable Flash cells,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Observation 2: Unreliable Flash Cells

- We organized the Flash cells into two categories:
 - reliable Flash cells,
 - ② unreliable Flash cells.

Observation 2: Unreliable Flash Cells

- We organized the Flash cells into two categories:
 - reliable Flash cells,
 - ② unreliable Flash cells.
- An unreliable Flash cell is a cell that experienced \geq 50 errors across the lifetime of the device.

Observation 2: Unreliable Flash Cells

- We organized the Flash cells into two categories:
 - reliable Flash cells,
 - 2 unreliable Flash cells.
- An unreliable Flash cell is a cell that experienced \geq 50 errors across the lifetime of the device.
- We identified 62659 (of the 134217728 total cells tested) unreliable Flash cells.

Observation 2: Unreliable Flash Cells

- We organized the Flash cells into two categories:
 - reliable Flash cells,
 - 2 unreliable Flash cells.
- An unreliable Flash cell is a cell that experienced \geq 50 errors across the lifetime of the device.
- We identified 62659 (of the 134217728 total cells tested) unreliable Flash cells.
- These cells accounted for over 10% of the total errors measured.

Observation 3: Unreliable Flash Cells Have Prominent Error Patterns

Programmed state	Percentage of Errors
000	0.4745
000	0.1630
0 <mark>1</mark> 0	0.0711
000	0.0676
001	0.0558
00 <mark>1</mark>	0.0525
01 <mark>1</mark>	0.0186

Low Voltage

(□) (č

ヨー の ٩

Main Idea

• Design error-correction scheme that takes into account Observations 1, 2, and 3.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Main Idea

- Design error-correction scheme that takes into account Observations 1, 2, and 3.
 - Code corrects errors where most of the errors affect only a single bit within each Flash cell (Observation 1).

Main Idea

- Design error-correction scheme that takes into account Observations 1, 2, and 3.
 - Code corrects errors where most of the errors affect only a single bit within each Flash cell (Observation 1).
 - Code allows unreliable Flash cells to be programmed at low voltage levels (Observations 2,3).

Code Properties

• Codes are over alphabet of size $q = 2^m$, where *m* is some positive integer and each symbol represents a Flash cell.

Code Properties

- Codes are over alphabet of size $q = 2^m$, where *m* is some positive integer and each symbol represents a Flash cell.
- A symbol is a binary length-*m* vector.

Code Properties

- Codes are over alphabet of size $q = 2^m$, where *m* is some positive integer and each symbol represents a Flash cell.
- A symbol is a binary length-*m* vector.
- A codeword is *n* binary length-*m* vectors so the result is a length-*nm* vector.

Code Properties

- Codes are over alphabet of size $q = 2^m$, where *m* is some positive integer and each symbol represents a Flash cell.
- A symbol is a binary length-*m* vector.
- A codeword is *n* binary length-*m* vectors so the result is a length-*nm* vector.
- Example over alphabet of size 8: (45702) -> (100 101 111 000 010)

Error Vectors

Definition (Graded Bit-Error Vector)

The length-*nm* vector $\mathbf{e} = (\mathbf{e}_0, \mathbf{e}_1, \dots, \mathbf{e}_{n-1})$, where each *m*-bit vector \mathbf{e}_i represents a symbol of size 2^m , is a $[\mathbf{t}_1, \mathbf{t}_2; \ell_1, \ell_2]$ -bit-error-vector if

Error Vectors

Definition (Graded Bit-Error Vector)

The length-*nm* vector $e = (e_0, e_1, \dots, e_{n-1})$, where each *m*-bit vector e_i represents a symbol of size 2^m , is a $[t_1, t_2; \ell_1, \ell_2]$ -bit-error-vector if $|\{i : e_i \neq 0\}| \le t_1 + t_2$.

Error Vectors

Definition (Graded Bit-Error Vector)

The length-*nm* vector $e = (e_0, e_1, \dots, e_{n-1})$, where each *m*-bit vector e_i represents a symbol of size 2^m , is a $[t_1, t_2; \ell_1, \ell_2]$ -bit-error-vector if

1
$$|\{i : e_i \neq 0\}| \leq t_1 + t_2$$

$$2 \quad \forall i, wt(\boldsymbol{e}_i) \leq \ell_2.$$

Error Vectors

Definition (Graded Bit-Error Vector)

The length-*nm* vector $\mathbf{e} = (\mathbf{e}_0, \mathbf{e}_1, \dots, \mathbf{e}_{n-1})$, where each *m*-bit vector \mathbf{e}_i represents a symbol of size 2^m , is a $[\mathbf{t}_1, \mathbf{t}_2; \ell_1, \ell_2]$ -bit-error-vector if

1
$$|\{i : e_i \neq 0\}| \leq t_1 + t_2$$

2
$$\forall i, wt(e_i) \leq \ell_2$$

3
$$|\{i : wt(e_i) > \ell_1\}| \le t_2$$
.

Graded Bit-Error Example

- Suppose the vector *x* of length 6 with 3-bit symbols shown below was transmitted.
 - $x = (000 \ 110 \ 010 \ 101 \ 000 \ 111)$

Graded Bit-Error Example

- Suppose the vector x of length 6 with 3-bit symbols shown below was transmitted.
 - $x = (000 \ 110 \ 010 \ 101 \ 000 \ 111)$
- The vector **y** was received:

 $y = (101 \ 110 \ 000 \ 101 \ 000 \ 011).$

Graded Bit-Error Example

- Suppose the vector x of length 6 with 3-bit symbols shown below was transmitted.
 - $x = (000 \ 110 \ 010 \ 101 \ 000 \ 111)$
- The vector y was received:

 $y = (101 \ 110 \ 000 \ 101 \ 000 \ 011).$

• Then [2,1;1,2]-bit-errors occurred.

Graded Bit-Error Example

- Suppose the vector x of length 6 with 3-bit symbols shown below was transmitted.
 - $x = (000 \ 110 \ 010 \ 101 \ 000 \ 111)$
- The vector y was received:

 $y = (101 \ 110 \ 000 \ 101 \ 000 \ 011).$

- Then [2, 1; 1, 2]-bit-errors occurred.
 - There are 2 + 1 symbols in error.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Graded Bit-Error Example

- Suppose the vector x of length 6 with 3-bit symbols shown below was transmitted.
 - $x = (000 \ 110 \ 010 \ 101 \ 000 \ 111)$
- The vector y was received:

 $y = (101 \ 110 \ 000 \ 101 \ 000 \ 011).$

- Then [2, 1; 1, 2]-bit-errors occurred.
 - There are 2 + 1 symbols in error.
 - At most 2 bits are in error for each symbol.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Graded Bit-Error Example

- Suppose the vector x of length 6 with 3-bit symbols shown below was transmitted.
 - $x = (000 \ 110 \ 010 \ 101 \ 000 \ 111)$
- The vector y was received:

 $y = (101 \ 110 \ 000 \ 101 \ 000 \ 011).$

- Then [2, 1; 1, 2]-bit-errors occurred.
 - There are 2 + 1 symbols in error.
 - At most 2 bits are in error for each symbol.
 - There is 1 symbol that has more than 1 bit in error.

Dynamic Bit-Error-Correcting Codes

• Let C be a $[t_1, t_2; \ell_1, \ell_2]_{2^m}$ code.

Dynamic Bit-Error-Correcting Codes

- Let \mathcal{C} be a $[t_1, t_2; \ell_1, \ell_2]_{2^m}$ code.
- The encoder chooses a message w ∈ Z_M for some positive integer M.

Dynamic Bit-Error-Correcting Codes

- Let C be a $[t_1, t_2; \ell_1, \ell_2]_{2^m}$ code.
- The encoder chooses a message w ∈ Z_M for some positive integer M.
- For any collection of indices S where $|S| \leq s_1$, there exists a codeword c that can be used to represent w such that:

Dynamic Bit-Error-Correcting Codes

- Let C be a $[t_1, t_2; \ell_1, \ell_2]_{2^m}$ code.
- The encoder chooses a message w ∈ Z_M for some positive integer M.
- For any collection of indices S where $|S| \leq s_1$, there exists a codeword c that can be used to represent w such that:
 - For any $j \in S$, the voltage level of cell c_j is at most s_2 .

Dynamic Bit-Error-Correcting Codes

- Let \mathcal{C} be a $[t_1, t_2; \ell_1, \ell_2]_{2^m}$ code.
- The encoder chooses a message w ∈ Z_M for some positive integer M.
- For any collection of indices S where $|S| \leq s_1$, there exists a codeword c that can be used to represent w such that:
 - For any $j \in S$, the voltage level of cell c_j is at most s_2 .
- The code C is referred to as an $[t_1, t_2; \ell_1, \ell_2; s_1, s_2]_{2^m}$ dynamic-bit-error-correcting code.

• We compared a dynamic graded-bit-error-correcting code against the following classes of codes:

Evaluation

- We compared a dynamic graded-bit-error-correcting code against the following classes of codes:
 - **1** A non-binary code over GF(8).

Evaluation

- We compared a dynamic graded-bit-error-correcting code against the following classes of codes:
 - **1** A non-binary code over GF(8).
 - A binary BCH code applied to MSB/CSB/LSB in parallel.

Evaluation

- We compared a dynamic graded-bit-error-correcting code against the following classes of codes:
 - A non-binary code over GF(8).
 - 2 A binary BCH code applied to MSB/CSB/LSB in parallel.
 - Three different binary BCH codes each one applied to one of the MSB/CSB/LSB.

Evaluation

- We compared a dynamic graded-bit-error-correcting code against the following classes of codes:
 - **1** A non-binary code over GF(8).
 - **2** A binary BCH code applied to MSB/CSB/LSB in parallel.
 - Three different binary BCH codes each one applied to one of the MSB/CSB/LSB.
 - A $[t_1, t_2; \ell_1, \ell_2]_{2^3}$ -bit-error-correcting code.

イロト (理) (ヨ) (ヨ) (ヨ) の(の)

Evaluation

- We compared a dynamic graded-bit-error-correcting code against the following classes of codes:
 - **1** A non-binary code over GF(8).
 - **2** A binary BCH code applied to MSB/CSB/LSB in parallel.
 - Three different binary BCH codes each one applied to one of the MSB/CSB/LSB.
 - A $[t_1, t_2; \ell_1, \ell_2]_{2^3}$ -bit-error-correcting code.
- For each graph, the codes compared have the same length and the same rate.

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のなべ

Results for block length 4096

Results for block length 8192

Error Rates of Codes Applied to TLC Flash

Results for block length 16384

• Newer generations of Flash memory continue to demand more efficient error-correction schemes.

・ロト ・ 日 ・ モ ト ・ 日 ・ うらぐ

- Newer generations of Flash memory continue to demand more efficient error-correction schemes.
- Errors that occur within these newer Flash devices tend to follow certain patterns.

- Newer generations of Flash memory continue to demand more efficient error-correction schemes.
- Errors that occur within these newer Flash devices tend to follow certain patterns.
- By taking into account the dominant error patterns observed on a TLC Flash cell, we designed more efficient error correction codes.

New center on Coding for Storage at UCLA: http://www.loris.ee.ucla.edu/codess

Kick-off day on 9/19/2013!

Registration is free. Register early, space is limited.

ション ふゆ メ キャ キャ マ ちょうく