

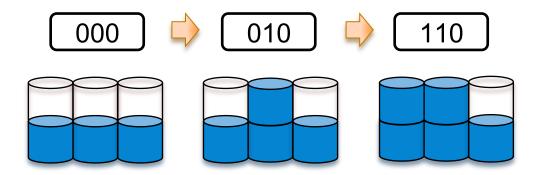
Joint Rewriting and Error Correction in Flash Memories

Yue Li joint work with

Anxiao (Andrew) Jiang, Eyal En Gad, Michael Langberg and Jehoshua Bruck

Memory The Problem of Block Erasure

- Erasing a cell requires block erasure
 - Block erasure slows down programming
 - Degrades flash cells
- Solutions
 - Flash translation layer (FTL)
 - Coding for rewriting data
 - Floating codes
 - Buffer codes
 - Rank modulation codes
 - Write-once memory (WOM) codes


- Store data by programming cells which have been programmed before without erasing a cell.
- Constraint: a cell previously at level 1 (high threshold voltage) has to stay at level 1 after rewriting.
 - e.g. 101 -> 111
- After rewriting, the data stored by the previous writes no longer need to be recovered.

Flash Memory The first write-once memory (WOM) code

R. L. Rivest and A. Shamir, "How to reuse a 'Write-Once' memory," Information and Control, vol. 55, pp. 1–19, 1982 (also published in STOC)

Data	Codeword (1 st write)	Codeword (2 nd write	()
00	000	111	Write 2 bits
01	001	110	twice using 3 cells
10	010	101	Rate = 4/3 =
11	100	011	1.33 bits/cell

Example (with SLC): we first write data 10, then rewrite the data to 01.

8/15/13

Capacities have been derived

[1] **C. Heegard**, "On the capacity of permanent memory", IEEE Transactions on Information theory, vol. 31, no. 1, 1985

Different WOM codes have been proposed.

Capacity-achieving codes have been proposed

- [1] A. Shipilka, "Capacity achieving multiwrite WOM codes", 2012.
- [2] D. Burshtein and A. Strugatski, "Polar write-once memory codes," ISIT 2012.

However, WOM codes for noisy channels are limited.

- [3] **G. Zemor and G. D. Cohen**, "Error-Correcting WOM-Codes", IEEE Transactions on Information Theory, vol. 37, no. 3, pp. 730-734, 1991.
- [4] E. Yaakobi, P. Siegel, A. Vardy, and J. Wolf, "Multiple Error-Correcting WOM-Codes", in IEEE Transactions on Information Theory, vol. 58, no. 4, pp. 2220-2230, 2012.

We study WOM codes which correct many errors.

8/15/13 5

- Views a write as the decoding of a polar code:
 - Views the cells' state before the write as a noisy Polar codeword.
 - Views the cells' state after the write as the corrected (i.e., error-free) Polar codeword.
- More precisely, write/rewrite can be considered as lossy data compression.

[1] D. Burshtein and A. Strugatski, "Polar write-once memory codes," ISIT 2012.

The Channel for Rewriting

- Smart idea by Burshtein and Strugatski:
 - Add dither to cell levels:
 - Let $s \in \{0,1\}$ be the level of a cell.

v'

- Let $g \in \{0,1\}$ be a pseudo-random number known to the WOM encoder and the WOM decoder.
- Let $v=s\oplus g$ be called the value of the cell.
- Build a test channel for the write, which we shall call the WOM channel

 $0 \circ (1, 0)$ $1 - \alpha$ $0 \circ (0, 0)$ $0 \circ (s, v)$ $1 \circ (0, 1)$ $1 - \alpha$ $0 \circ (1, 1)$

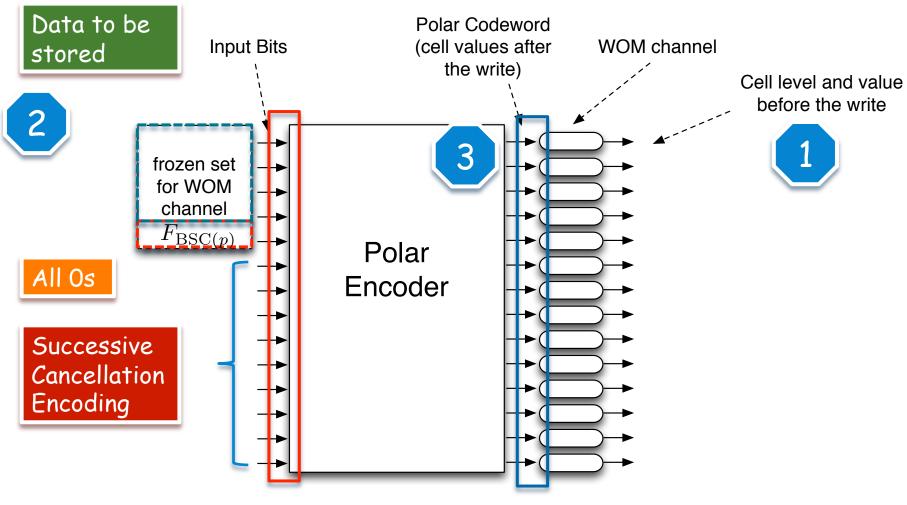
a: fraction of the cells at "0" ε: fraction of the cells you can

program

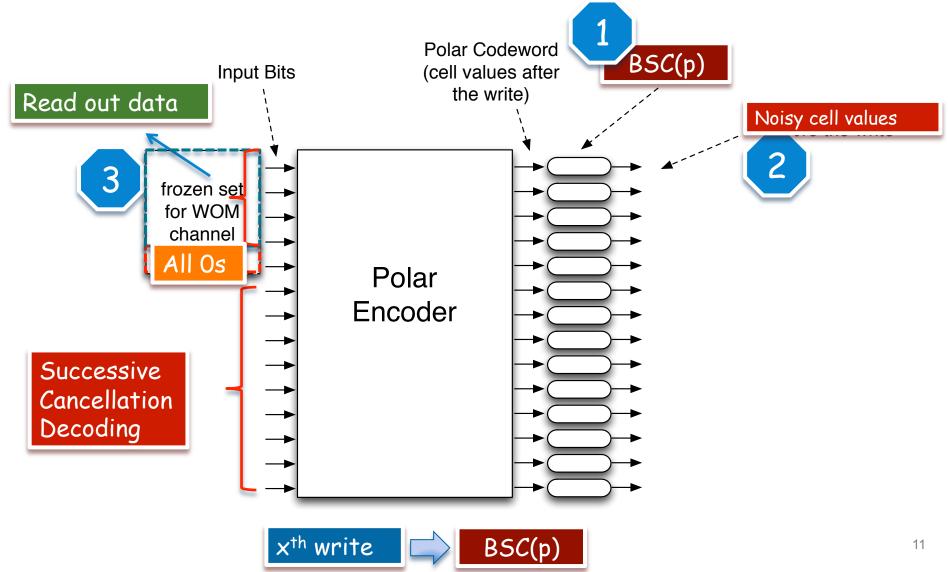
Cell states and values

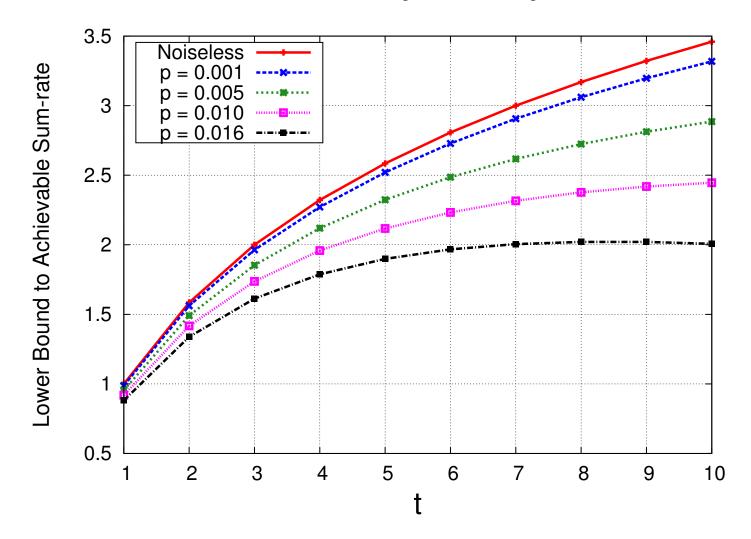
before rewrite

WOM codes



- We would like to construct a nested code.
 - A WOM codeword is also a channel codeword
- Consider two channels
 - WOM channel. Let its frozen set be $F_{\mathrm{WOM}(\alpha,\epsilon)}$
 - BSC/noise channel. Let its frozen set be $F_{\mathrm{BSC}(p)}$
- A codeword of polar codes for WOM channel is also a codeword of the codes for BSC channel under the condition


$$F_{\mathrm{BSC}(p)} \subseteq F_{\mathrm{WOM}(\alpha,\epsilon)}$$



Flash Memory The Decoding Scheme

Shipmemory Lower Bounds to Achievable Sum-Rates

Sum-rate: total number of bits that can be stored using one cell through t writes.

- We proposed a coding scheme
 - allows multiple rewrites in one P/E cycle.
 - corrects a significant number of errors
 - Uses polar lossy source coding and channel coding

A. Jiang, Y. Li, E. En Gad, M. Langberg and J. Bruck. Joint Rewriting and Error Correction in Write-Once Memories. ISIT 2013.

8/15/13