

## FLASH RELIABILITY, BEYOND DATA MANAGEMENT AND ECC

Hooman Parizi, PHD Proton Digital Systems Aug 15, 2013







Section 1: Flash Reliability

Section 2: Components to Improve Flash Reliability

Section 3: FLASHPRO Media Manager

Section 4: Conclusion



# FLASH RELIABILITY



- Two major trends are driving NAND Flash Capacity and Cost:
  - Flash geometry
  - Number of bits stored in a cell



Both trends significantly degrade Flash endurance and reliability



#### IMPROVING FLASH RELIABILITY





- 3 Major components to improve Flash reliability:
  - Data Management
  - Error Correcting Codes
  - Statistical Digital Signal Processing (S-DSP)



### SHANNON LIMIT



- Shannon limit is the theoretical limit on the code rate that enables error free transmission/data recovery
- Our goal is to get as close as possible to the Shannon limit





### ERROR CORRECTING CODES



- BCH codes are running out of steam
  - complexity dramatically increases with "t" (correction capability)
  - can't take advantage of soft-data
  - Its performance is limited to the Shannon limit for hard channel
- LDPC codes
  - Smart implementation of LDPC codes are low power and cost effective
  - Near Shannon-limit performance
  - Take advantage of soft-data
  - Have been proven in communication and HDD spaces
  - FPGA implementations are available

#### Other Codes

- Remember, we can't cross Shannon-limit
- Cost of implementation is generally higher than LDPC



#### FLASH LDPC VS. COMMUNICATION STANDARDS AND HDD



| IEEE Standard | Application  | CW Size<br>(Byte) | Parity<br>(%)    | Data Rate<br>(Mbyte/s) | Comments                                        |  |
|---------------|--------------|-------------------|------------------|------------------------|-------------------------------------------------|--|
|               |              |                   |                  |                        | Optional                                        |  |
| 802.11n       | Wireless LAN | 81, 162, 243      | 50, 33, 25, 17   | 75                     | but used by everybody                           |  |
| 802.11ac      | Wireless LAN | 81, 162, 243      | 50, 33, 25, 17   | 866                    | Mandatory                                       |  |
| 802.15        | UWB          | 150, 165          | 50, 37.5, 25, 20 | 125                    |                                                 |  |
| 802.3an       | 10G Ethrnet  | 256               | 15.5             | 800                    |                                                 |  |
| No Standard   | HDD          | 0.5KB to 4KB      | 10 to 13         | up to 500              |                                                 |  |
|               |              |                   |                  |                        |                                                 |  |
| No Standard   | FLASH        | 1KB to 4KB        | 5 to 15          | 400-4000               | access to manufacturer secret commands required |  |

• Reference: IEEE standard publications



#### FLASH LDPC VS. COMMUNICATION STANDARDS (2)



- 10GBaseT (IEEE 802.3an) SNR Plot vs. a custom code generated for Flash
- Flash works at a much lower SNR





### LDPC CODE FOR FLASH



- We need LDPC code that is optimized for Flash
- LDPC codes based on communication standards will not work for Flash
  - All are based on fixed codes (matrix) provided by IEEE
  - CodeWord size is usually very small
  - Amount of parity is usually very high
- To get the best out of LDPC for Flash it should work together with Statistical Digital Signal Processing (S-DSP)



#### STATISTICAL-DSP: FLASH VARIABILITY

 Capturing statistical variation among different Flash vendor samples and operating conditions

Flash Vendor B, Enterprise 2 Ynm MLC, P/E=2000

Upper page soft read





Upper page soft read







### STATISTICAL-DSP AND LDPC CODES



- Statistical Digital Signal Processing guarantees LDPC to always work close to Shannon limit
- Improves quality of LLRs (Log Likelihood Ratio) that is used as input of LDPC decoder
- S-DSP uses adaptive algorithms to maintain optimal performance
  - Monitors the performance and behavior of the Flash memory
  - As Flash degrades over time the S-DSP adapts to achieve maximum reliability



#### FLASHPRO MEDIA MANAGER



#### FLASHPRO MEDIA MANAGAER BLOCK DIAGRAM







#### FLASHPRO MEDIA MANAGER



- FLASHPRO implements a high reliable media manager for FLASH Controllers
  - Advanced data management
  - LDPC Decoder and Encoder optimized for FLASH applications
  - Statistical Digital Signal Processing (S-DSP)
- Flexible data-rate for encoder and decoder
  - Supports up to 4 GB/s per instance
- Standard or custom high speed interfaces for host side
  - Custom DMA bus or ARM AXI/AHB is supported for easier integration
- Reliability firmware runs on a local processor



### FLASHPRO REFERENCE DESIGN SYSTEM



Complete reference design for FlashPRO Reliability System Solution





### LDPC AND ERROR FLOOR



- Error Floor: With very low probability LDPC codes can fail even at high SNR
- Error floor should be analyzed to guarantee unrecoverable error rate
- FLASHPRO based Error Floor System allows analyzing error floor below 10<sup>-15</sup> bits
  - Guarantees system has no error floor below 10<sup>-15</sup>
  - Implementation is based on ZYNQ ZC706







| IP         | Freq<br>(MHz) | Throughput<br>(GByte/s) | Cell Area<br>(sq mm) | Memory  | Gates<br>Total Power<br>(mW) | Gates<br>Total Power<br>(mW) |
|------------|---------------|-------------------------|----------------------|---------|------------------------------|------------------------------|
|            |               |                         |                      | (KByte) | Beginning-of-Life            | End-of-Life                  |
| Consumer   | 500           | 0.38                    | 0.026                | 15.9    | 13                           | 33                           |
| Enterprise | 800           | 4.31                    | 0.197                | 17.7    | 127                          | 328                          |

- Lowest power LDPC decoder
- TSMC 28nm HPM technology
  - Implementation is based on 8 metal layer (8LM6X1ZUTRDL)
  - Only HVT cells are used
  - Timing is closed for SS corner, 0.81V, and 125C
- Codeword size is 1KB
- Total power is measured at TT, 0.9V, 25C



### CONCLUSION



- There are three major components to increase Flash reliability
  - Data Management
  - Error Correction Codes
  - Statistical Digital Signal Processing
- Best Error Correction Codes can operate close to Shannon limit
  - LDPC together with S-DSP will work close to Shannon limit
- Communication Standards requirements for LDPC Codes are significantly different from Flash systems
- FLASHPRO implements a complete flash reliability solution
  - Lowest area and power
  - Implementation available on ASIC, FPGA, Structured ASIC





#### **THANK YOU**