

End to End NAND Flash Solution Selection and Configuration

Minimizing The Challenge of Embedded NAND SSD Implementations

Jeffray Hsieh Sr. Director of Sales ATP

Overview

The Challenge of Embedded SSD Implementation

- Usage Model Variance
- Untraditional usage models
- Longevity/Reliability under Dynamic Change
- Common Mistakes in Solution Selection

3 Areas of Solution Selection

- NAND Configuration
- Firmware/Setting Configuration
- Host Setting Configuration
- Take Away Points

Usage Model Variance

Embedded SSD projects all vary in terms of:

File read/write Usage Model

- File sizes
- Static versus dynamic data
- Examples
 - Boot Device: Read Only
 - > Data Logging: Cyclic, small file write

Intended Environmental Conditions

- Operating or Storage Temperature gradient/cycling
- Humidity
- Cold start
- Vibration/Shock
- OS/File system (often custom)
- MISC Application Requirements
 - Fixed versus removable form factor + Frequency and manner of insertion
 - Power Cycling Requirements
 - Bandwidth/performance requirements

Untraditional Usage Models

Untraditional usage for NAND

- Certain requirements of SLC, but density/cost requirements of MLC
 - Example: Endurance requirements between MLC/eMLC, but high requirement for data retention
- Untraditional usage for Industry Standards
 - Form factors and protocol schemes developed for consumer usage
- Example: In Vehicle Infotainment: Navigation Data
 - Removability is required for future map updates
 - This usage model:
 - Mostly read with very little to no write
 - Small amounts of data commonly read, remaining data intermittently read
 - Focus on reliability under long term data retention over a wide temperature range

Longevity/Reliability under Dynamic Change

- The NAND/DRAM industry is fast moving with continuous evolution of IC architecture and manufacturing process.
- Embedded/Industrial Applications typically require:
 - Longer term, more costly validation/qualification
 - Increased liability and strict requirements for DPM failure rate
 - Increased sensitivity to stability and control on BOM

Common Mistakes in Solution Selection

- One dimensional cost evaluation, commonly cost per density/GB
 - **TCO** (Total cost of Ownership) of a solution should include:
 - Cost per TBW/endurance
 - Re-qualification costs
 - AFR (Annual Failure Rate)
- Insufficient re-evaluation of solution under die change
 - Solution/Density evaluation only under NPI, not under sustaining
 - Often sustaining level qualifications are simplified and inadequate
 - Densities and the solution itself often has to change upon die revision

Incorrect timing of BOM planning

- BOMs are often selected with recommended cost/availability timing during early NPI, but not ideal for later in mass production
- This may also result in redundant, multiple qualifications during NPI or even during mass production ramp

3 Areas of Proper Solution Selection

NAND Configuration

The first step is to select the right NAND + Controller solution with proper information exchange

Firmware/Setting Configuration

With a hardware setup established, controller settings can be optimized and tested by project requirement

Host Setting Configuration

In many cases, the host usage model or software configurations are fixed, but just as often there was simply a lack of information exchange on possible ways to optimize the host for more efficient and thus more cost effective usage of the storage device

NAND Configuration

Information Exchange

- Establish project reliability and performance hard requirements
- Project usage model details must be communicated to the SSD vendor for analysis on WAI (write amplification index) efficiency
- Project schedule and supply chain windows need to be established

Evaluation of NAND options and density to establish cost effectiveness in terms of:

- Cost per GB
- Cost per Usage/TBW
- Cost per longevity window
- Satisfaction of project reliability and performance hard requirements

	TLC	cMLC	eMLC	IT MLC	SLC
	1111				
Cost/GB	~	ノノノノ	~~	ノノノ	~
Cost/TBW	v	~~	~~~~ ~	r	~~~~
Data Retention	v	~~	r	~~	~~~~
tPROG	~	~~	v	~~	~~~
Density Scalability	~~~	~~~	~~~	VVV	~~
Longevity Window	v	~~	~~~	~~	~~~

Interface Mode

- Many industry standards require support for different interface modes
- Example: CompactFlash allows for UDMA/MWDMA/PIO, Fixed Disk/Removable modes.
- Avoid a 'trial and error' scenario and establish the correct interface mode settings ONCE

Density/Provisioning Settings

- Duplication/content loading environment/requirements
- Overprovisioning

SSD Information Access

- Usage/wear/health status
- SMART command set settings for ATA devices
- Special command set settings for other devices

Special Algorithms or Functions

- Special functions for encryption, serialization/keys, power cycling recovery
- Special commands to trigger special SSD functions
- Application specific special controller algorithms
- eg. AutoRefresh techniques to combat data retention issues

Host Setting Configuration

File Read/Write sizes

- Page/block sizes continue to grow, but many embedded applications remain at very small file sizes.
- The NAND flash/controller management unit size, block, and page sizes need to be communicated by BOM to allow for possible host optimization and improvement on WAI

File System/OS

File systems and OS environments are often directly drafted over from a previous implementation on HDD and need to be revisited for SSDs.

Host Response to SSD Health Status

- Signal scheme to server or user based on SSD health status
- Host usage mode response to SSD health status

Avoid "Second guessing" the controller

Switching over from a discrete NAND implementation to a managed NAND solution often involves 'deprogramming' the host from trying to implement its own wear leveling and block level management algorithms

Conclusion

Take Away Points:

- With this increasing diversity of both NAND options and application specific controller setting/features, deeper considerations and additional information exchange should be included for the proper selection of a embedded NAND SSD. Factors that should always be discussed:
 - Usage model details
 - Project Longevity Requirements and sensitivity/cost to re-qualification
 - Cost metrics including Cost per TBW, Cost per longevity window, not only cost/GB.
 - Project NPI and ramp schedules
- Deeper collaboration with your embedded SSD vendor for proper information exchange for every *qualification* and even *die revision*.
- Demand more active feedback from your embedded SSD vendor regarding your specific usage model and the appropriate most cost effective solution.

Conclusion

Follow up with ATP for more information on:

- □ Solution Selection Services:
 - Project TCO evaluation process which quantifies several solution options/densities.
 - Joint validation program involving joint testing processes at the system level
- □ Information Exchange Services:
 - Quarter market updates and embedded SSD technology trends
 - NAND Validation/Testing Reports focused on embedded usage models, various environmental conditions and their associated NAND bit error rates
 - Solution whitepapers on specific failures encountered in the industrial and embedded application segments

sales@atpinc.com

www.atpinc.com

sales@atpinc.com

2013 ATP Electronics, Inc.