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Learning Objectives 
At the conclusion of this tutorial the audience will 
have been exposed to: 
• The different types of Data Compression 
• Common Data Compression Algorithms 
• The Deflate/Inflate (GZIP/GUNZIP) algorithms in 

detail 
• Implementation Options (Software/Hardware) 
• Impacts of design parameters in Performance 
• SSD benefits and challenges  
• Resources for Further Study  
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Agenda  

• Background, Definitions, & Context 
• Data Compression Overview 
• Data Compression Algorithm Survey  
• Deflate/Inflate (GZIP/GUNZIP) in depth 
• Software Implementations 
• HW Implementations 
• Tradeoffs & Advanced Topics 
• SSD Benefits and Challenges  
• Conclusions  
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Definitions  

Item Description Comments 

Open 
System 

A system which will compress 
data for use by other entities. 
I.E. the compressed data will 
exit the system 

Must strictly adhere to standards 
on compress / decompress 
algorithms  

Interoperability among vendors 
mandated for Open Systems   

Closed 
System 

A system which utilizes  
compressed data internally but 
does not expose compressed 
data to the outside world 

Can support a limited, optimized 
subset of standard.  
Also allows custom algorithms 
No Interoperability req’d.  

Symmetric 
System  

Compress and Decompress 
throughputs are similar  

Example – 40 Gb/s Ethernet 
Connection.  

Asymmetric 
System  

Compress and Decompress 
throughputs are dissimilar 

Asymmetric can be workload 
balance or throughput differences 
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Definitions  

Item Description Comments 

Structured 
Data 

Data which can be grouped 
into records of similar type and 
organized into a database 
(typically in Row & Column 
format)  

Can included metadata about 
unstructured data 

Unstructured 
Data  

Data which does not fit into the 
structured classification 

You know it when you see it…  

Corpra Example Datasets used to 
verify and compare algorithms 
and their implementations  

Examples:  Calgary Corpus, 
Canterbury Corpus, etc. 
Note:  Other datasets also exist 
that are used for this purpose 
(TPC-H and TPC-R for 
example  
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Definitions  

Item Description er 

Literal  Within the context of LZ77 
compression – a byte of data not 
part of a matched string 

Substitutes 8 bits with 9  
i.e. “a” becomes 0,a 
 

Length, 
Distance  

Within the context of LZ77 
compression , the representation 
of a string  3 – 258 bytes long 
which matches a previous string 
in the history  

Replaces the string with 24 bits 
of Offset and Distance back into 
the history i.e.:  
 
1,L,D 

Algorithm A strictly defined procedure (well 
in a perfect world…) to 
implement a  particular function.  

Different methods of 
implementing algorithms 
possible for different use cases  

Alphabet The total set of possible 
members of a group 

A-Z = alphabet of 26 
“Literals = alphabet of 256 
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Compression Approaches 

Compression is the elimination of redundancy in data in a reversible 
manner, increasing entropy and reducing the size of the data. 

Compression can be lossless or lossy: 

● Lossy - In some applications, it is acceptable to “lose” a small amount of 
input information during compression / decompression in exchange for 
higher compression ratios 

● Examples are Video or Audio, where eyes or ears will seldom detect some 
reasonable loss of detail 

● Lossless – In many application, no data loss is acceptable, and in 
general this means lossless algorithms compress less than lossy 
algorithms. 

● Examples are financial data, medical records, user databases, etc.;  where any 
data loss means data corruption and cannot be tolerated. 

Santa Clara, CA 
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Lossless Compression Techniques  

• Run Length Encoding – Replaces long strings of 
identical data with two symbols representing a symbol 
and length.  Works well for long runs of repeating 
data:  
• i.e. 000000011111111 replaced with 0,7;1,8 

• Dictionary Coder – Substitutes matched strings with 
references to a “dictionary”.  The dictionary can be 
fixed or variable.  A file can serve as its own 
dictionary.  
• Can Emulate Run Length Encoding (LZ77 for example) 

• Huffman Encoding – Creating variable length symbols 
based on frequency of usage that replace a fixed 
length alphabet. 

Santa Clara, CA 
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Lempel-Ziv Algorithm Family  

LZ1(LZ77) & LZ2 (LZ78):  Algorithms first described in 
papers published by Abraham Lempel and Jacob Ziv in 1977 
and 1978.  Named an IEEE Milestone in 1984  

Santa Clara, CA 
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Algorithm  Description / Comments  

LZ1 (LZ77)  
LZ2 (LZ78) 

Initial algorithms published in Lempel-Ziv’s classic 
1977 & 1978 papers: 
LZ77: Sliding Window Dictionary up to 32K 
LZ78: Explicit Dictionary  

LZS: Lempel-Ziv Stac  Sliding Window of fixed 2K Size + Static Huffman 
Encoder.  Simple fast, popular 

LZW: Lempel-Ziv Welch Improvement on LZ78 

LZMA: Lempel-Ziv Markhov 
Algorithm  

Used in 7 Zip 

Plus:  LZO, LZRW, LZJB, LZWL, LZX, LZ4…..  
Santa Clara, CA 
August 2013 
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Agenda  

• Background, Definitions, & Context 
• Data Compression Overview 
• Data Compression Algorithm Survey  
• Deflate/Inflate (GZIP/GUNZIP) in depth 
• Software Implementations 
• HW Implementations 
• Tradeoffs & Advanced Topics 
• SSD Benefits and Challenges  
• Conclusions  
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Deflate Algorithm: 

The Deflate Algorithm combines LZ77 & Huffman Encoding 
into a popular lossless data compression algorithm.  
• LZ77: Duplicate String Search and Replacement 

• Up to 32KB History Window 
• Minimum 3 byte string, max 258 byte 

• Huffman: Bit Decimation  
• Static Huffman: Default code table presumed by encoder and 

decoder 
• Dynamic Huffman: Optimized code table constructed and 

stored/transmitted within Deflate Block 

• Deflate is the algorithm that is used in the popular GZIP 
and Zlib formats.  
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Data Context, Characteristics, etc.  

Deflate Processing  
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LZ77 Processing 
(String Search & 
Replacement )  

Huffman Encoding 
(Bit Reduction)  



Deflate/Zlib/GZIP Decoder Ring: 

Name Standard Description  

Deflate / 
Inflate RFC-1951 The fundamental compression / decompression algorithm.  

Can be used without GZIP / Zlib.  

GZIP RFC-1950 

File format which supports multiple algorithms – although 
only Deflate has been used to date: 

Wraps deflate output with header / trailer Optional flags 
allow detailed metadata to be inserted if so desired.  

ZLIB RFC-1952 
Streaming format which supports multiple algorithms – 
although only Deflate has been specified and used to date:  
Wraps Deflate output with lightweight header/trailer 

15 

GZIP, Zlib, and Deflate are interrelated but separate standards and often used 
interchangeably in the vernacular.  This is inaccurate, and can cause issues…  
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Deflate Characteristics 

 Non Recursive - Cannot compress already compressed 
data for additional Compression Ratio:  Data will 
typically expand after first pass.  

 
 Tremendous flexibility in Compressing Data  

• Window Size 
• Output Block Size 
• Maximum Max Length 
• Implementation options for LZ77 Search Engine 

– Hash Based (HW and SW) 
– Systolic Array Based (HW Only) 

• Huffman Encoding  
– Static or Dynamic 
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Deflate in Closed Systems  

Tremendous Additional Flexibility in Closed Systems 
(Typical of Flash Use Cases) Note:  No longer standards 
based Deflate – proceed with care!  
 Custom Optimized Static Huffman Trees (Based on 

optimizations of known data characteristics) 
 Metadata Additions for housekeeping / error 

detection/correction  
• CRC’s, Hashes, etc. 

 Custom Fixed Dictionaries () 
• Extreme Example:  Calgary Corpus = 14 files: 
• Could be represented as a 4 bit dictionary (with 2 spare bits …)  
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Compressed Data Stream  

RFC 1950 – Deflate Header Format  

BF BType Compressed Data  

18 

Input 
File / 

Stream  
Deflate  
Block 1 

Deflate  
Block 2 

Deflate  
SubBlock n ... Deflate  

Block 3 

Field Description Decoder   

BF Block Final 
0 – More Blocks Follow 

1 – Last Block of Data Stream 

Btype Block Type 

00 – Raw/Stored Mode 

01 – Static Huffman Coding 
10 – Dynamic Huffman Coding 

11 – Reserved, Not Used 

Size (2K – 4K typical)  
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Compressed Data Stream  

RFC 1950 – Deflate Header Format  

19 

Input 
File / 

Stream  
Deflate  
Block 1 

Deflate  
Block 2 

Deflate  
SubBlock n ... Deflate  

Block 3 

0 00 PAD 
[4:0] 

LEN 
[15:0] 

NLEN 
[15:0] 

LEN bytes of Literal Data 
(64K Max) 

0 01 LZ77 Static Huffman Encoded Data  

0 10 Huffman 
Code Table LZ77 Dynamic Huffman Encoded Data  
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Deflate Compressed Data   

RFC 1950 – ZLIB Header Format 

CM CINFO  FLG DICTID  Deflate Compressed Data  ADLER-32 

20 

Input 
File/ 
Stream  

ZLIB 
Header  

ZLIB Trailer 

Field Description Decoder  

CM Compression Method  x8 = Deflate;  xff = Reserved; Others – Not Assigned  

CINFO Compression 
Information 

For CM = 0x8:  
0x8 – xFF: Not Allowed 
0x7: - x0: 32K – 256B History Window 

For CM Not = x8: Not Defined 

FLG Flags  
FLG [4:0]  Check Bits; FLG[5] = 1: Dictionary ID 
Present 
FLG [7:6] = Compression Level  

DICTID Dictionary ID Identification for optional pre-defined Dictionary.  See 
RFC-1950 for Details 

ADLR-32 Checksum  
ALDER-32 Checksum over uncompressed data 

(Before Deflate Processing)  Santa Clara, CA 
August 2013 



GZIP “Member” 1 of n 

Deflate Compressed Data   

RFC 1952 – GZIP Header Format 

ID1 ID2 CM  FLAG MTIME XFL OS Optional CRC ISIZE 

21 

Input 
Data 
Stream  

GZIP 
Header  

GZIP Trailer 

Field Description Decoder  

ID1 & ID2 ID Flags  ID1 = 0x1F; ID2 = 0x8B:  GZIP;  All others undefined 

CM  Compression Method   CM = 0x8; Deflate: CM = 0x7- 0x0; Reserved  

FLG Flags  
If FLG [n] = 1:  

FLG [0] FTEXT (“Probably” Compressed ASCII Text) 
FLG [1] FHCRC (Optional CRC-16 for Header Present) 
FLG [2] FEXTRA (Optional Extra Fields Present)  
FLG [3] FNAME (Filename Present) 
FLG [4] FCOMMENT (Comments Present) 
FLG [7:5] Reserved 

MTIME Modification Time  Creation / Modification time in Unix Format  

XFL Extra Flags:   
For CM = 0x8  XFL =2; Max Compression; XFL = 4: Fastest Compression 

OS Operating System OS [8:0] (See RFC 1952 for list) 

CRC CRC-32 CRC-32 of Uncompressed Data (Before Deflate Processing) 

ISIZE Input Size Size of original input data modulo 2^32 
Santa Clara, CA 
August 2013 



GZIP Functional Block Diagram  

 Input  
Data   

Output  
Data 

GZIP 

LZ77 
Compressor Huffman Encoder 

22 

LLD  
Tokens 

Santa Clara, CA 
August 2013 

Applies to HW or SW Implementation  



LZ77 Compression - Overview 

● LZ77 is a data compression method first described by 
Lempel & Ziv in 1977 

● It uses a moving “window” of the last N bytes of the data 
that has been processed, and for the subsequent bytes it 
then searches for the longest match it can make in that 
earlier history. 

● The minimum match length is 3, so even if there is no 
current match a sequence of 3 new bytes is typically the 
minimum being searched for. 
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LZ77 Compression - operation 

● If no match >=3 characters is found, the 1st byte of the 
string is output as a literal byte, the window start and end 
are adjusted by one, and the next input byte is appended to 
the end of the 2 remaining bytes and a new search 
commences. 

● If a 3 byte match IS found, new bytes are one-at-a-time 
added to the end of the match string, and searches are 
made to determine if the new longer string also has at least 
one match in the window. 

● If a byte is added and there is no new match for the longer 
string, the previous matched string is emitted as a 
windows offset, length pair instead of the literal bytes. 

Santa Clara, CA 
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LZ77 Compression – Compression Rates 

● In the Gzip/ZLIB variant of LZ77, an output literal byte 
occupies 9 bits, and a matched string up to 258 bytes 
occupies 24 bits. 

● Thus the worst-case result for just the LZ77 in this case is 
1/8 = 12% growth, vs. a best case of 24/258*8 = 98.8% 
reduction in size. 

Santa Clara, CA 
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LZ77 Compression – Example 

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Output
1 a wait
2 a a wait
3 a a c 0,a
4 a a c a 0,a
5 a a c a a 0,c
6 a a c a a c wait
7 a a c a a c a wait
8 a a c a a c a b 1,0,4
9 a a c a a c a b c wait
10 a a c a a c a b c a 0,b
11 a a c a a c a b c a b wait
12 a a c a a c a b c a b a 1,5,3
13 a a c a a c a b c a b a a wait
14 a a c a a c a b c a b a a a 0,a
15 a a c a a c a b c a b a a a c wait
16 a a c a a c a b c a b a a a c a wait
17 a a c a a c a b c a b a a a c a a wait
18 a a c a a c a b c a b a a a c a a b 1,0,5
19 a a c a a c a b c a b a a a c a a b 0,b

126 144

Input String Index

Santa Clara, CA 
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Literals  

Length, 
Distance  



Lazy Match 

 Usually when a match string is broken LZ77 
will immediately output a L,D pair and begin a 
new string.  This is a Greedy Match 

 Often a better Compression Ratio will occur if 
the search engine waits to see if a better 
match will occur later.  This is  a Lazy Match 

 Lazy Match waits can repeat for more than 
one byte.  



Step 10 11 12 13 14 15 16 17 18 19 20 21 Output
1 a wait
2 a b wait
3 a b c 0,a
4 a b c d 0,b
5 a b c d b 0,c
6 a b c d b c 0,d
7 a b c d b c d wait
8 a b c d b c d e 1,1,3
9 a b c d b c d e b wait

10 a b c d b c d e b a 0,e
11 a b c d b c d e b a a 0,b
12 a b c d b c d e b a a b 0,a
13 a b c d b c d e b a a b c wait
14 a b c d b c d e b a a b c d wait
15 a b c d b c d e b a a b c d e 1,1,4
16 a b c d b c d e b a a b c d e b wait
17 a b c d b c d e b a a b c d e b a wait
18 a b c d b c d e b a a b c d e b a a wait
19 a b c d b c d e b a a b c d e b a a a 1,7,4
20 a b c d b c d e b a a b c d e b a a a d 0,a
21 a b c d b c d e b a a b c d e b a a a d 0,d

153 160
4.38%

Input String Index

Greedy vs. Lazy Match 

Santa Clara, CA 
August 2013 

 
28 



10 11 12 13 14 15 16 17 18 19 20 # Output
a wait
a b wait
a b c 0,a
a b c d 0,b
a b c d b 0,c
a b c d b c 0,d
a b c d b c d wait
a b c d b c d e Lwait
a b c d b c d e b 1,1,3
a b c d b c d e b a 0,e
a b c d b c d e b a a 0,b
a b c d b c d e b a a b 0,a
a b c d b c d e b a a b c wait
a b c d b c d e b a a b c d wait
a b c d b c d e b a a b c d e Lwait
a b c d b c d e b a a b c d e b 0,a
a b c d b c d e b a a b c d e b a wait
a b c d b c d e b a a b c d e b a a wait
a b c d b c d e b a a b c d e b a a a Lwait
a b c d b c d e b a a b c d e b a a a d 1,2,7
a b c d b c d e b a a b c d e b a a a d 0,a
a b c d b c d e b a a b c d e b a a a d 0,d 160

138 13.75%

Input String Index

Greedy vs. Lazy Match  Example 

Santa Clara, CA 
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Huffman Encoding 

 Huffman encoding was invented by a MIT student in 1951, as part of a class 
assignment (David A Huffman). 
 

• It uses uniquely-encoded binary bit strings to encode data. 
 

• It encodes the most-frequently occurring characters to the shortest strings, and 
less-frequent characters in longer strings.  
 

• It is only required to instantiate as many bit strings as you have characters, so if 
the characters to be encoded are “sparse”, the number of bits used will be 
minimal. 
 

• The bit strings are constructed in such a manner that it is guaranteed when you 
decode the resulting string, it is always lossless and can be reconstructed from 
the tree . 

Santa Clara, CA 
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Huffman Encoding (1) 
Example: 

Santa Clara, CA 
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Frequency Table: A(4); B(3); C(2); D(1)  

Encoded String: 0 110 10 110 0 10 0 0 111 10  

Initial String: ACBCABAADB 

Huffman Binary Tree  
19 Bits w/ 
Huffman 

vs. 80 Bits 
ASCII  



Deflate Huffman Encoding 

 Complex and Efficient 
 Three Alphabets 

• Literals (256 possible values of a byte) 
• Match Length (3-258) 
• Distance (1 – 32,768) 

 Encodes 288 +32 (320 Total) Symbols 
• 288 Literals, Match Lengths, Overhead 
• 32 Distance Codes (Separate Tree)  

 NOTE: RFC1951 is 15 pages.  
• Boilerplate, References, etc.  Several Pages 
• Hashing – a couple of paragraphs 
• Huffman Encoding – over 7 pages…  
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Agenda  

• Background, Definitions, & Context 
• Data Compression Overview 
• Data Compression Algorithm Survey  
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• SSD Benefits and Challenges  
• Conclusions  
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Implementation Approaches:  

Software: Dedicated Programs 
• Intel Architecture Processors 
• RISC Processors (ARM, PPC, MIPS) 
• Others (GPUs, DSP, etc.) 
Hardware: 
• Dedicated Accelerators 
• Task Specific Custom CPUs 
Hybrid: 
• ISA Enhancements:  (e.g. HUFF $temp) 
• Algorithm Partitioning (SW + Accelerators) 
 

Santa Clara, CA 
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Implantation Tradeoffs:  

Metric Description Comments 

Throughput Gb/s capability of a particular 
implementation.   
Aggregate – total throughput 
Thread – throughput of single 
Deflate Stream  

Single Stream throughput is most 
challenging:  I.E. – 12 Gb/s 
single stream is MUCH harder 
than 12 1 Gb/s streams.  

Latency Delay from start to finish of 
compression / decompression 

Larger History Windows, 
Dynamic Huffman increase 
latency  

Compression 
Ratio 

Reduction in size of original file. 
E.g. a 3:1 ratio means the final 
result is 1/3 the size of the 
starting block or file 

Larger History Windows, 
Dynamic Huffman increase 
compression ratio  

Resource 
Utilization 

Die Area, CPU Cores, Memory, 
Power are all resources utilized 
by H/W or SW implementations 

Faster = more power & area 
Tighter CR = more power & area 
 Santa Clara, CA 

August 2013 
 

35 



Hashing  

Hashing is the operation of applying an algorithm 
to a variable length string of data and generating a 
fixed length output:  

Santa Clara, CA 
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 abc  

 abcdef  

01101001  

10110010  

#  
#  

10110010  #  zbkk 

8 bit hash 
= 256 

Indexes  

Different 
Inputs Hash 

to same index 



Hashing Considerations 

Hashing is a critical path function 
• Must be Simple (Small Resource cost) 
• Must be Fair” (equally distribute inputs into bins) 
• Must be Fast (Throughput, Low Latency) 
 
# of Indexes/Bins impacts CR & Performance 
• More Bins = less matches per bin 
• More Bins = more resources  

Santa Clara, CA 
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SW GZIP Implementation 
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abcdbabd

abc

bcd

cdb

head prev
H(abc)

bcda bcdc

abca

(Current Input String to Match)

abcd abcc

cdbb cdba



SW GZIP Implementation 

• Hashing and Hash Chaining (1) 
• In SW, LZ77 longest-string matches are implemented 

with a Hash Table (Head) and a chaining table (Prev).  
• Head is indexed by the hash of all active 3-byte 

sequences in the window, and is basically the 3-byte 
“head” of all possible window strings. 

• Prev keeps track of all “suffixes” to the 3 bytes indexed 
by “head”.  

• Head is 2^HashLength in size 
• Prev is 2^WindowSize in size 
• Hash of chars ci, ci+1, ci+2 is: 

• ((((Ci << 5) ^ ci+1) << 5) + ci+2)  & WMASK    where ^ = XOR, << = SHL 
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SW GZIP Implementation 

• Hashing and Hash Chaining (2) 
• The hash tables fill as multiple string matches in the 

window are found 
• Because of hash collisions, hash table “hits” have to be 

verified by byte-comparisons in the window, although 
there are some shortcuts used to simplify this. 

• The “Prev” chain can become quite long if there are 
multiple matches concurrently in the window (think 32KB 
of all 0’s). 

• Four parameters are specified to limit the time spent 
creating / searching / maintaining the hash tables to an 
acceptable level 
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SW Parameter Tuning 

GZIP SW defines the following parameters which 
are specified by a command line input  

Santa Clara, CA 
August 2013 

 
41 

Parameter Description  

good_length Reduce lazy search above this match length 

max_lazy Do not perform lazy search above this match length 

nice_length Quit search above this match length 

max_chain Maximum length of hash chain to follow 



GZIP SW Compression “Levels” 
- Default is Level 6 

Level Good 
Length  

Max 
Lazy 

Nice 
Length 

Max 
Chain Mode Comments 

0 0 0 0 0 Raw/Store  Apply Format 
1 4 4 8 4 

Static 
Huffman  

No Lazy 
Matches  2 4 5 16 8 

3 4 6 32 32 

4 4 4 16 16 

Dynamic 
Huffman  Lazy Matches  

5 8 16 32 32 

6 8 16 128 128 

7 8 32 128 256 

8 32 128 258 1024 

9 32 258 258 4096 

Santa Clara, CA 
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GZIP Functional Block Diagram  

 Input  
Data   

Output  
Data 

GZIP 

LZ77 Search 
Engine  Huffman Encoder 

43 

LLD  
Tokens 

Santa Clara, CA 
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LZ77 HW Search Engines   

Two common approaches:  
 Hash Based 

• Traditional Implementation – History stored in buffer(s) 
• Logic finds the longest match by stepping through a hash table 
• Limits on length of search within each history required 
• Multiple histories allow parallel searches 

 
 Systolic Array Based 

• History stored in hardware registers  
• Hardware priority encoder locates longest match 
• Fast, deterministic operation (No Hashing / Hash Chains)  

44 
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Hash Based Search Engine 
 –  Functional Block Diagram  

 Input  
Data   

Near 
Distance 
Matcher 

Output Data 
(LLD) 

Look Ahead 
Buffer and 

Byte 
Alignment 

Output Formation 

History n History 0 

Hash 
FCN  … 

Hash 
Table  

45 
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Systolic Array Search Engine  
 – Functional Block Diagram   
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HW  Huffman Encoders  

Two Huffman Encoder implementations for Deflate:  
 

 Static Huffman only 
• Trivially small, simple, low latency 
• Encodes all blocks as “Static Huffman”, so compression ratio is compromised 
• This is what existing industry players usually offer  

 Dynamic Huffman (includes static encoding capability) 
• Derives optimum Huffman code, creates “Dynamic Huffman” 

blocks. 
• Options allow selection of smallest size between dynamic 

Huffman, static Huffman, or stored mode. No compromises – 
always produces highest possible compression ratio output for a 
given search engine. 

• Numerous run time options to help user logic: 
– Concatenate output blocks 
– Raw buffer management 
– Output byte alignment (ZFLUSH) capability 
– Various tuning capabilities – see user guide 
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Dynamic Huffman Encoding Engine 
 – Functional Block Diagram (simplified) 
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GUNZIP Functional Block Diagram  
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Agenda  

• Background, Definitions, & Context 
• Data Compression Overview 
• Data Compression Algorithm Survey  
• Deflate/Inflate (GZIP/GUNZIP) in depth 
• Software Implementations 
• HW Implementations 
• Tradeoffs & Advanced Topics 
• SSD Benefits and Challenges  
• Conclusions  
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Verification Datasets  

Corpora are datasets used to benchmark compression 
implementations  
 Classic corpora 

• Canterbury, Calgary, Large, Artificial, Miscellaneous 
 Other corpora 

• Protein, Lukas, Silesia (see http://www.data-compression.info ) 
• The “Govdocs1 Million Files Corpus” (see http://digitalcorpora.org ) 

– Several CPU-months of simulation time, many hours of FPGA emulation time 

 Locally generated 
• Special test cases which cannot be generated by GNU zip 
• Arbitrary files  taken from various *nix, Windows systems, mobile phones 

 WWW and other content 
• Video streams (e.g. youtube, news services), image and other near 

incompressible data 
• DVD files 
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Parallel Processing Options  

Standard Data Center Processors lack 
Symmetric Multi-Processing (SMP) 
Capabilities – Must pre-process  
somehow to take advantage of multi- 
core CPUs 

 
Alternative Processor Architectures 

(ARM, PPC, MIPS) can be more 
capable… 

 
PigZ is one alternative that attempts to 

utilize multiple processor cores to 
process a single stream of data   

Software  
Many more alternatives exist for 

Parallel Processing with HW 
Implementations of Deflate 

LZ77 and Huffman Encoders can be 
“Stacked” to process a stream in 
parallel  

• Slight decrease in CR – dataset  
dependent but typically between 
1% to 3% 

• Linear scaling in Throughput 

• Linear scaling in consumed 
resources (area, power, etc).  

Hardware 
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GZIP Instance Stacking 

Item Notes 

Objectives:  

Provide order of magnitude higher per stream throughput than achievable 
via traditional techniques applied to individual instances (clock rate 
enhancement, data bus widening, etc.) 
Maximize Utilization of Huffman Encoding Engine 

Throughput Enhancement   Effectively n * x –  i.e. 4 instances yield a ~ 4x throughput improvement 

Compression Ratio 
Impacts 

Negligible – Current benchmarking shows  ~ 0.33%  to ~ 1.3 %  C/R 
degradation  (depending upon configuration options) between 1 instance 
and 2 stacked instances. No further C/R degradation observed for 
additional stacked GZIP instances  (beyond 2nd).  

Resource (Gates, Memory) 
Impacts  

Scales Linearly – very little overhead for splitter and combiner logic.  
Potential interconnect impact, depending on configuration options, 
number of instances used, etc.  

Standards Compatibility  RFC Compliant – can decompress using standard GUNZIP IP or 
Software 
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Search Engine Instance stacking maximizes throughput of Huffman Encoder 
Can also stack GZIP Instances containing stacked Search Engines   
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GZIP Instance Stacking 
  - Typical Application 
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GZIP Instance stacking achieves order of magnitude throughput improvements !  
Examples –  a GZIP Block with: 

 8 stacked instances @ 4 Gb/s  = 4 GB/s (32 Gb/s) 
10 stacked instances @  6.4 Gb/s = 8 GB/s (64 Gb/s) 

An FPGA proof of concept which compresses at 124 Gb/s has been simulated… 
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Parallel Processing Challenges 

 Decompression:  Equivalent of parallel processing / 
stacking for Inflate/GUNZIP not possible for standards 
compatible files  
 

 PigZ SW pre & post processing, but core inflate 
processing CPU bound. 
• Maybe OK for asymmetric systems  

 
 HW Inflate engines optimized by design but …. 

 
 Solution is addition of small amount of meta-data to 

deflate blocks – but problematic for open systems  
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State of Industry - Accelerators 

• Under the hood in many flash subsystems 
• Most current MIPS CPUs offer acceleration of 

deflate/inflate.  ARM & PPC?   
• A Recent Intel Server Chipset platform supports  

GZIP acceleration in HW.  
• PCIe Cards (ComTech, Exar) 
• Semiconductor IP also available to “roll your 

own”  
• Real time compression “appliances” available 

• HW & SW approaches 
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August 2013 

 
57 



Implementation Challenges in SSDs   

• 8 Bit Algorithms vs. 32/64 Bit Processors 
• Processor Architectures: 

• Lack of Symmetric Multi-Processing capability in some CPUs 
limits single thread performance (ARM, PPC MIPS excluded) 

• Errors in Data Compression Process (Soft errors) 

• Lack of Deterministic Outcome on Compression - One 
byte change in a block can promulgate large change in 
compressed block size.  

• Mismatch between standard formats and fixed sectors for 
SSDs / HDDs 

• Uncompressible Data can Grow in size 
• Mismatch in output between HW & SW implementations  
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Solutions to Challenges 

Challenge Solution  

Soft Errors  Error Corrected Memories  

Lack of Determinism in block size  Force Deflate Block Generation on 
desired boundaries  

Lack of Determinism in throughput / 
latency  

Choose small windows, Static 
Huffman, or Systolic Array LZ77 
implementation  

Data Expansion (Attempting to 
compress encrypted or pre-
compressed data)  

Select best of available Deflate Block 
formats on a block by block basis  

Lack of Equivalency between HW and 
SW Implementations 

SW Model that exactly matches HW 
implementation 
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Conclusions 

• There is no perfect Data Compression Solution – all 
are subject to tradeoffs 
 

• To the extent possible – know your data and tune the 
Data Compression Solution accordingly 
 

• H/W and SW solutions optimize performance for 
different parameters 
 

• Using both HW and SW solutions in the same system 
requires careful thought & planning 
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Resources & References  

 www.sandgate.com  
 

 http://www.ics.uci.edu/~dan/pubs/DataCompression.html 
 

 http://mattmahoney.net/dc/dce.html 
 

 http://www.zlib.net/feldspar.html 
 

 http://en.wikipedia.org/wiki/DEFLATE 
 

 http://www.gzip.org/algorithm.txt 
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Thank You! 
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Supplemental Materials  
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LZ77 Compression – Example 

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Output
1 a wait
2 a a wait
3 a a c 0,a
4 a a c a 0,a
5 a a c a a 0,c
6 a a c a a c wait
7 a a c a a c a wait
8 a a c a a c a b 1,0,4
9 a a c a a c a b c wait
10 a a c a a c a b c a 0,b
11 a a c a a c a b c a b wait
12 a a c a a c a b c a b a 1,5,3
13 a a c a a c a b c a b a a wait
14 a a c a a c a b c a b a a a 0,a
15 a a c a a c a b c a b a a a c wait
16 a a c a a c a b c a b a a a c a wait
17 a a c a a c a b c a b a a a c a a wait
18 a a c a a c a b c a b a a a c a a b 1,0,5
19 a a c a a c a b c a b a a a c a a b 0,b

126 144

Input String Index
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LZ77 Compression – Example 

● Steps 1-2: wait for 3 bytes to search for. 

● Steps 3-5: Have 3 bytes, but no 3 byte match, so emit 1 char and try next input char. 

● Step 6-7: Have 3B match, then 4 

● Step 8: no 5B match on next char, so output 4B match and restart search with 1 new 
byte (#8) 

● Steps 9-10: wait for 3 bytes to search for; no 3B match, so emit 'b' and continue with 
next byte 

● Step 11: Have 3B match, wait to see if it gets bigger 

● Step 12: Match ends, emit 3B, start w/1 new byte 

● Step 13-14: Get 3 bytes, but no 3 byte match, so emit 1 char and try next input char. 

● Step 15-17: Have 3,4,5B match 

● Step 18: New byte breaks string match, emit 5B string & restart 

● Step 19: End of input file, output remaining bytes as literal 

● Results: input=18*8=144 bits, Out=6*9+3*24=126b, 12.5% smaller 
Santa Clara, CA 
August 2013 



Lazy Match 

●When scanning new input data to continue a match string, 
normally at the first character that breaks the string match, the 
search terminates and the whole match string is output and a new 
search commences. This is called Greedy Match. 

●What if there was a match starting @ N+m in the above case, 
which continues and includes the newly added last byte, and in 
fact would be a longer match than the one emitted? 

●Lazy Match delays committing to output when a match breaks  
for one or more additional characters, looking to see if a longer 
match is possible.  If a longer match is found, the longer match is 
used and the initial character of the smaller match is emitted as a 
literal. 
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Greedy vs Lazy Match – Example 

● Steps 1-14: roughly same for both cases, except “lazy wait” in step 8 that 
doesn't pan out. 

● Step 15, greedy match: Have 4 byte match, end of match, emit 4B match.. 
● Step 15, lazy match: Don't commit to 4B match, add one more byte and see 

if we may have another 4B match – and we do. 
● Step 16, lazy match: Search using next byte, find we now have a 5B match, 

better than original 4B match, so emit 1st char as literal and continue search. 
● Steps 17-18, lazy match: extend match to 6 then 7 bytes 
● Step 19, lazy match: match ends, but hold off committing to output until we 

see if still no match on next byte (lazy wait). 
● Step 20, lazy match: no new 7B match, output original 7B match 
● Step 21, lazy match: output 1B literal 
● Step 22, lazy match: End of file, output remaining chars as literals 
● Results: Greedy match=4.38% smaller vs . Lazy Match=13.75% 
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Huffman Encoding (1) 
Example: 

Huffman Encode the string: ACBCABAADB

Frequency Table:
A  4
B  3
C 2
D 1

Build the Binary Tree:

A

B

C

D

0

1
10

11
110

111

Huffman Encode the original String:
0 110 10 110 0 10 0 0 111 10

ASCII Size = 10*8 = 80 Bits

Huffman Size = 19 Bits
Note the receiver needs BOTH the Huffman 
String AND the encoding binary tree. This is 
“Dynamic” Huffman. It adapts to and 
minimally encodes the given dataset.

“Static Huffman” uses a pre-defined binary 
tree with “typically good” encodings; this 
eliminates the need to construct, send, and 
reconstruct the tree with the encoded data, 
as both sides can have a pre-provisioned 
static tree, but it is not an optimal encoding.

Santa Clara, CA 
August 2013 

 
68 



 GZIP Implementation 

• Hashing and Hash Chaining – Implications 
• SW implementations require RAM to implement the HASH 

tables. This has a cost in die size for on-chip applications. 
• Since the hash tables vary in length and search depth based 

on the input data, the time to search varies greatly based on 
the input data. This means the search time is non-
deterministic within limits set by the compression level.  

• Systolic-Array (HW) based LZ77 implementations can 
deliver a search result in a fixed-time per new character, 
regardless of the input data and window, and it can be much 
less than the worst-case hash-based approach. 
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