
 Data Compression in Solid State Storage

John Fryar
jfryar@ctp-llc.com

Santa Clara, CA
August 2013

1

Acknowledgements

This presentation would not have been possible
without the counsel, hard work and graciousness
of the following individuals and/or organizations:

Raymond Savarda

Santa Clara, CA
August 2013

2

Sandgate Technologies

Disclaimers

The opinions expressed herein are those of the
author and do not necessarily represent those
of any other organization or individual unless
specifically cited.

A thorough attempt to acknowledge all sources
has been made. That said, we’re all human…

Santa Clara, CA
August 2013

3

Learning Objectives
At the conclusion of this tutorial the audience will
have been exposed to:
• The different types of Data Compression
• Common Data Compression Algorithms
• The Deflate/Inflate (GZIP/GUNZIP) algorithms in

detail
• Implementation Options (Software/Hardware)
• Impacts of design parameters in Performance
• SSD benefits and challenges
• Resources for Further Study

Santa Clara, CA
August 2013

4

Agenda

• Background, Definitions, & Context
• Data Compression Overview
• Data Compression Algorithm Survey
• Deflate/Inflate (GZIP/GUNZIP) in depth
• Software Implementations
• HW Implementations
• Tradeoffs & Advanced Topics
• SSD Benefits and Challenges
• Conclusions

Santa Clara, CA
August 2013

5

Definitions

Item Description Comments

Open
System

A system which will compress
data for use by other entities.
I.E. the compressed data will
exit the system

Must strictly adhere to standards
on compress / decompress
algorithms

Interoperability among vendors
mandated for Open Systems

Closed
System

A system which utilizes
compressed data internally but
does not expose compressed
data to the outside world

Can support a limited, optimized
subset of standard.
Also allows custom algorithms
No Interoperability req’d.

Symmetric
System

Compress and Decompress
throughputs are similar

Example – 40 Gb/s Ethernet
Connection.

Asymmetric
System

Compress and Decompress
throughputs are dissimilar

Asymmetric can be workload
balance or throughput differences

Santa Clara, CA
August 2013

6

Definitions

Item Description Comments

Structured
Data

Data which can be grouped
into records of similar type and
organized into a database
(typically in Row & Column
format)

Can included metadata about
unstructured data

Unstructured
Data

Data which does not fit into the
structured classification

You know it when you see it…

Corpra Example Datasets used to
verify and compare algorithms
and their implementations

Examples: Calgary Corpus,
Canterbury Corpus, etc.
Note: Other datasets also exist
that are used for this purpose
(TPC-H and TPC-R for
example

Santa Clara, CA
August 2013

7

Definitions

Item Description er

Literal Within the context of LZ77
compression – a byte of data not
part of a matched string

Substitutes 8 bits with 9
i.e. “a” becomes 0,a

Length,
Distance

Within the context of LZ77
compression , the representation
of a string 3 – 258 bytes long
which matches a previous string
in the history

Replaces the string with 24 bits
of Offset and Distance back into
the history i.e.:

1,L,D

Algorithm A strictly defined procedure (well
in a perfect world…) to
implement a particular function.

Different methods of
implementing algorithms
possible for different use cases

Alphabet The total set of possible
members of a group

A-Z = alphabet of 26
“Literals = alphabet of 256

Santa Clara, CA
August 2013

8

Compression Approaches

Compression is the elimination of redundancy in data in a reversible
manner, increasing entropy and reducing the size of the data.

Compression can be lossless or lossy:

● Lossy - In some applications, it is acceptable to “lose” a small amount of
input information during compression / decompression in exchange for
higher compression ratios

● Examples are Video or Audio, where eyes or ears will seldom detect some
reasonable loss of detail

● Lossless – In many application, no data loss is acceptable, and in
general this means lossless algorithms compress less than lossy
algorithms.

● Examples are financial data, medical records, user databases, etc.; where any
data loss means data corruption and cannot be tolerated.

Santa Clara, CA
August 2013

9

Lossless Compression Techniques

• Run Length Encoding – Replaces long strings of
identical data with two symbols representing a symbol
and length. Works well for long runs of repeating
data:
• i.e. 000000011111111 replaced with 0,7;1,8

• Dictionary Coder – Substitutes matched strings with
references to a “dictionary”. The dictionary can be
fixed or variable. A file can serve as its own
dictionary.
• Can Emulate Run Length Encoding (LZ77 for example)

• Huffman Encoding – Creating variable length symbols
based on frequency of usage that replace a fixed
length alphabet.

Santa Clara, CA
August 2013

10

Lempel-Ziv Algorithm Family

LZ1(LZ77) & LZ2 (LZ78): Algorithms first described in
papers published by Abraham Lempel and Jacob Ziv in 1977
and 1978. Named an IEEE Milestone in 1984

Santa Clara, CA
August 2013

11

Algorithm Description / Comments

LZ1 (LZ77)
LZ2 (LZ78)

Initial algorithms published in Lempel-Ziv’s classic
1977 & 1978 papers:
LZ77: Sliding Window Dictionary up to 32K
LZ78: Explicit Dictionary

LZS: Lempel-Ziv Stac Sliding Window of fixed 2K Size + Static Huffman
Encoder. Simple fast, popular

LZW: Lempel-Ziv Welch Improvement on LZ78

LZMA: Lempel-Ziv Markhov
Algorithm

Used in 7 Zip

Plus: LZO, LZRW, LZJB, LZWL, LZX, LZ4…..
Santa Clara, CA
August 2013

11

Agenda

• Background, Definitions, & Context
• Data Compression Overview
• Data Compression Algorithm Survey
• Deflate/Inflate (GZIP/GUNZIP) in depth
• Software Implementations
• HW Implementations
• Tradeoffs & Advanced Topics
• SSD Benefits and Challenges
• Conclusions

Santa Clara, CA
August 2013

12

Deflate Algorithm:

The Deflate Algorithm combines LZ77 & Huffman Encoding
into a popular lossless data compression algorithm.
• LZ77: Duplicate String Search and Replacement

• Up to 32KB History Window
• Minimum 3 byte string, max 258 byte

• Huffman: Bit Decimation
• Static Huffman: Default code table presumed by encoder and

decoder
• Dynamic Huffman: Optimized code table constructed and

stored/transmitted within Deflate Block

• Deflate is the algorithm that is used in the popular GZIP
and Zlib formats.

Santa Clara, CA
August 2013

13

Data Context, Characteristics, etc.

Deflate Processing

Santa Clara, CA
August 2013

14

LZ77 Processing
(String Search &
Replacement)

Huffman Encoding
(Bit Reduction)

Deflate/Zlib/GZIP Decoder Ring:

Name Standard Description

Deflate /
Inflate RFC-1951 The fundamental compression / decompression algorithm.

Can be used without GZIP / Zlib.

GZIP RFC-1950

File format which supports multiple algorithms – although
only Deflate has been used to date:

Wraps deflate output with header / trailer Optional flags
allow detailed metadata to be inserted if so desired.

ZLIB RFC-1952
Streaming format which supports multiple algorithms –
although only Deflate has been specified and used to date:
Wraps Deflate output with lightweight header/trailer

15

GZIP, Zlib, and Deflate are interrelated but separate standards and often used
interchangeably in the vernacular. This is inaccurate, and can cause issues…

Santa Clara, CA
August 2013

Deflate Characteristics

 Non Recursive - Cannot compress already compressed
data for additional Compression Ratio: Data will
typically expand after first pass.

 Tremendous flexibility in Compressing Data

• Window Size
• Output Block Size
• Maximum Max Length
• Implementation options for LZ77 Search Engine

– Hash Based (HW and SW)
– Systolic Array Based (HW Only)

• Huffman Encoding
– Static or Dynamic

Santa Clara, CA
August 2013

16

Deflate in Closed Systems

Tremendous Additional Flexibility in Closed Systems
(Typical of Flash Use Cases) Note: No longer standards
based Deflate – proceed with care!
 Custom Optimized Static Huffman Trees (Based on

optimizations of known data characteristics)
 Metadata Additions for housekeeping / error

detection/correction
• CRC’s, Hashes, etc.

 Custom Fixed Dictionaries ()
• Extreme Example: Calgary Corpus = 14 files:
• Could be represented as a 4 bit dictionary (with 2 spare bits …)

17 Santa Clara, CA
August 2013

Compressed Data Stream

RFC 1950 – Deflate Header Format

BF BType Compressed Data

18

Input
File /

Stream
Deflate
Block 1

Deflate
Block 2

Deflate
SubBlock n ... Deflate

Block 3

Field Description Decoder

BF Block Final
0 – More Blocks Follow

1 – Last Block of Data Stream

Btype Block Type

00 – Raw/Stored Mode

01 – Static Huffman Coding
10 – Dynamic Huffman Coding

11 – Reserved, Not Used

Size (2K – 4K typical)

Santa Clara, CA
August 2013

Compressed Data Stream

RFC 1950 – Deflate Header Format

19

Input
File /

Stream
Deflate
Block 1

Deflate
Block 2

Deflate
SubBlock n ... Deflate

Block 3

0 00 PAD
[4:0]

LEN
[15:0]

NLEN
[15:0]

LEN bytes of Literal Data
(64K Max)

0 01 LZ77 Static Huffman Encoded Data

0 10 Huffman
Code Table LZ77 Dynamic Huffman Encoded Data

Santa Clara, CA
August 2013

Deflate Compressed Data

RFC 1950 – ZLIB Header Format

CM CINFO FLG DICTID Deflate Compressed Data ADLER-32

20

Input
File/
Stream

ZLIB
Header

ZLIB Trailer

Field Description Decoder

CM Compression Method x8 = Deflate; xff = Reserved; Others – Not Assigned

CINFO Compression
Information

For CM = 0x8:
0x8 – xFF: Not Allowed
0x7: - x0: 32K – 256B History Window

For CM Not = x8: Not Defined

FLG Flags
FLG [4:0] Check Bits; FLG[5] = 1: Dictionary ID
Present
FLG [7:6] = Compression Level

DICTID Dictionary ID Identification for optional pre-defined Dictionary. See
RFC-1950 for Details

ADLR-32 Checksum
ALDER-32 Checksum over uncompressed data

(Before Deflate Processing) Santa Clara, CA
August 2013

GZIP “Member” 1 of n

Deflate Compressed Data

RFC 1952 – GZIP Header Format

ID1 ID2 CM FLAG MTIME XFL OS Optional CRC ISIZE

21

Input
Data
Stream

GZIP
Header

GZIP Trailer

Field Description Decoder

ID1 & ID2 ID Flags ID1 = 0x1F; ID2 = 0x8B: GZIP; All others undefined

CM Compression Method CM = 0x8; Deflate: CM = 0x7- 0x0; Reserved

FLG Flags
If FLG [n] = 1:

FLG [0] FTEXT (“Probably” Compressed ASCII Text)
FLG [1] FHCRC (Optional CRC-16 for Header Present)
FLG [2] FEXTRA (Optional Extra Fields Present)
FLG [3] FNAME (Filename Present)
FLG [4] FCOMMENT (Comments Present)
FLG [7:5] Reserved

MTIME Modification Time Creation / Modification time in Unix Format

XFL Extra Flags:
For CM = 0x8 XFL =2; Max Compression; XFL = 4: Fastest Compression

OS Operating System OS [8:0] (See RFC 1952 for list)

CRC CRC-32 CRC-32 of Uncompressed Data (Before Deflate Processing)

ISIZE Input Size Size of original input data modulo 2^32
Santa Clara, CA
August 2013

GZIP Functional Block Diagram

 Input
Data

Output
Data

GZIP

LZ77
Compressor Huffman Encoder

22

LLD
Tokens

Santa Clara, CA
August 2013

Applies to HW or SW Implementation

LZ77 Compression - Overview

● LZ77 is a data compression method first described by
Lempel & Ziv in 1977

● It uses a moving “window” of the last N bytes of the data
that has been processed, and for the subsequent bytes it
then searches for the longest match it can make in that
earlier history.

● The minimum match length is 3, so even if there is no
current match a sequence of 3 new bytes is typically the
minimum being searched for.

Santa Clara, CA
August 2013

23

LZ77 Compression - operation

● If no match >=3 characters is found, the 1st byte of the
string is output as a literal byte, the window start and end
are adjusted by one, and the next input byte is appended to
the end of the 2 remaining bytes and a new search
commences.

● If a 3 byte match IS found, new bytes are one-at-a-time
added to the end of the match string, and searches are
made to determine if the new longer string also has at least
one match in the window.

● If a byte is added and there is no new match for the longer
string, the previous matched string is emitted as a
windows offset, length pair instead of the literal bytes.

Santa Clara, CA
August 2013

24

LZ77 Compression – Compression Rates

● In the Gzip/ZLIB variant of LZ77, an output literal byte
occupies 9 bits, and a matched string up to 258 bytes
occupies 24 bits.

● Thus the worst-case result for just the LZ77 in this case is
1/8 = 12% growth, vs. a best case of 24/258*8 = 98.8%
reduction in size.

Santa Clara, CA
August 2013

25

LZ77 Compression – Example

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Output
1 a wait
2 a a wait
3 a a c 0,a
4 a a c a 0,a
5 a a c a a 0,c
6 a a c a a c wait
7 a a c a a c a wait
8 a a c a a c a b 1,0,4
9 a a c a a c a b c wait
10 a a c a a c a b c a 0,b
11 a a c a a c a b c a b wait
12 a a c a a c a b c a b a 1,5,3
13 a a c a a c a b c a b a a wait
14 a a c a a c a b c a b a a a 0,a
15 a a c a a c a b c a b a a a c wait
16 a a c a a c a b c a b a a a c a wait
17 a a c a a c a b c a b a a a c a a wait
18 a a c a a c a b c a b a a a c a a b 1,0,5
19 a a c a a c a b c a b a a a c a a b 0,b

126 144

Input String Index

Santa Clara, CA
August 2013

26

Literals

Length,
Distance

Lazy Match

 Usually when a match string is broken LZ77
will immediately output a L,D pair and begin a
new string. This is a Greedy Match

 Often a better Compression Ratio will occur if
the search engine waits to see if a better
match will occur later. This is a Lazy Match

 Lazy Match waits can repeat for more than
one byte.

Step 10 11 12 13 14 15 16 17 18 19 20 21 Output
1 a wait
2 a b wait
3 a b c 0,a
4 a b c d 0,b
5 a b c d b 0,c
6 a b c d b c 0,d
7 a b c d b c d wait
8 a b c d b c d e 1,1,3
9 a b c d b c d e b wait

10 a b c d b c d e b a 0,e
11 a b c d b c d e b a a 0,b
12 a b c d b c d e b a a b 0,a
13 a b c d b c d e b a a b c wait
14 a b c d b c d e b a a b c d wait
15 a b c d b c d e b a a b c d e 1,1,4
16 a b c d b c d e b a a b c d e b wait
17 a b c d b c d e b a a b c d e b a wait
18 a b c d b c d e b a a b c d e b a a wait
19 a b c d b c d e b a a b c d e b a a a 1,7,4
20 a b c d b c d e b a a b c d e b a a a d 0,a
21 a b c d b c d e b a a b c d e b a a a d 0,d

153 160
4.38%

Input String Index

Greedy vs. Lazy Match

Santa Clara, CA
August 2013

28

10 11 12 13 14 15 16 17 18 19 20 # Output
a wait
a b wait
a b c 0,a
a b c d 0,b
a b c d b 0,c
a b c d b c 0,d
a b c d b c d wait
a b c d b c d e Lwait
a b c d b c d e b 1,1,3
a b c d b c d e b a 0,e
a b c d b c d e b a a 0,b
a b c d b c d e b a a b 0,a
a b c d b c d e b a a b c wait
a b c d b c d e b a a b c d wait
a b c d b c d e b a a b c d e Lwait
a b c d b c d e b a a b c d e b 0,a
a b c d b c d e b a a b c d e b a wait
a b c d b c d e b a a b c d e b a a wait
a b c d b c d e b a a b c d e b a a a Lwait
a b c d b c d e b a a b c d e b a a a d 1,2,7
a b c d b c d e b a a b c d e b a a a d 0,a
a b c d b c d e b a a b c d e b a a a d 0,d 160

138 13.75%

Input String Index

Greedy vs. Lazy Match Example

Santa Clara, CA
August 2013

29

Huffman Encoding

 Huffman encoding was invented by a MIT student in 1951, as part of a class
assignment (David A Huffman).

• It uses uniquely-encoded binary bit strings to encode data.

• It encodes the most-frequently occurring characters to the shortest strings, and
less-frequent characters in longer strings.

• It is only required to instantiate as many bit strings as you have characters, so if
the characters to be encoded are “sparse”, the number of bits used will be
minimal.

• The bit strings are constructed in such a manner that it is guaranteed when you
decode the resulting string, it is always lossless and can be reconstructed from
the tree .

Santa Clara, CA
August 2013

30

Huffman Encoding (1)
Example:

Santa Clara, CA
August 2013

31

Frequency Table: A(4); B(3); C(2); D(1)

Encoded String: 0 110 10 110 0 10 0 0 111 10

Initial String: ACBCABAADB

Huffman Binary Tree
19 Bits w/
Huffman

vs. 80 Bits
ASCII

Deflate Huffman Encoding

 Complex and Efficient
 Three Alphabets

• Literals (256 possible values of a byte)
• Match Length (3-258)
• Distance (1 – 32,768)

 Encodes 288 +32 (320 Total) Symbols
• 288 Literals, Match Lengths, Overhead
• 32 Distance Codes (Separate Tree)

 NOTE: RFC1951 is 15 pages.
• Boilerplate, References, etc. Several Pages
• Hashing – a couple of paragraphs
• Huffman Encoding – over 7 pages…

32

Agenda

• Background, Definitions, & Context
• Data Compression Overview
• Data Compression Algorithm Survey
• Deflate/Inflate (GZIP/GUNZIP) in depth
• Software Implementations
• HW Implementations
• Tradeoffs & Advanced Topics
• SSD Benefits and Challenges
• Conclusions

Santa Clara, CA
August 2013

33

Implementation Approaches:

Software: Dedicated Programs
• Intel Architecture Processors
• RISC Processors (ARM, PPC, MIPS)
• Others (GPUs, DSP, etc.)
Hardware:
• Dedicated Accelerators
• Task Specific Custom CPUs
Hybrid:
• ISA Enhancements: (e.g. HUFF $temp)
• Algorithm Partitioning (SW + Accelerators)

Santa Clara, CA
August 2013

34

Implantation Tradeoffs:

Metric Description Comments

Throughput Gb/s capability of a particular
implementation.
Aggregate – total throughput
Thread – throughput of single
Deflate Stream

Single Stream throughput is most
challenging: I.E. – 12 Gb/s
single stream is MUCH harder
than 12 1 Gb/s streams.

Latency Delay from start to finish of
compression / decompression

Larger History Windows,
Dynamic Huffman increase
latency

Compression
Ratio

Reduction in size of original file.
E.g. a 3:1 ratio means the final
result is 1/3 the size of the
starting block or file

Larger History Windows,
Dynamic Huffman increase
compression ratio

Resource
Utilization

Die Area, CPU Cores, Memory,
Power are all resources utilized
by H/W or SW implementations

Faster = more power & area
Tighter CR = more power & area
 Santa Clara, CA

August 2013

35

Hashing

Hashing is the operation of applying an algorithm
to a variable length string of data and generating a
fixed length output:

Santa Clara, CA
August 2013

36

 abc

 abcdef

01101001

10110010

10110010 # zbkk

8 bit hash
= 256

Indexes

Different
Inputs Hash

to same index

Hashing Considerations

Hashing is a critical path function
• Must be Simple (Small Resource cost)
• Must be Fair” (equally distribute inputs into bins)
• Must be Fast (Throughput, Low Latency)

of Indexes/Bins impacts CR & Performance
• More Bins = less matches per bin
• More Bins = more resources

Santa Clara, CA
August 2013

37

SW GZIP Implementation

Santa Clara, CA
August 2013

38

abcdbabd

abc

bcd

cdb

head prev
H(abc)

bcda bcdc

abca

(Current Input String to Match)

abcd abcc

cdbb cdba

SW GZIP Implementation

• Hashing and Hash Chaining (1)
• In SW, LZ77 longest-string matches are implemented

with a Hash Table (Head) and a chaining table (Prev).
• Head is indexed by the hash of all active 3-byte

sequences in the window, and is basically the 3-byte
“head” of all possible window strings.

• Prev keeps track of all “suffixes” to the 3 bytes indexed
by “head”.

• Head is 2^HashLength in size
• Prev is 2^WindowSize in size
• Hash of chars ci, ci+1, ci+2 is:

• ((((Ci << 5) ^ ci+1) << 5) + ci+2) & WMASK where ^ = XOR, << = SHL

Santa Clara, CA
August 2013

39

SW GZIP Implementation

• Hashing and Hash Chaining (2)
• The hash tables fill as multiple string matches in the

window are found
• Because of hash collisions, hash table “hits” have to be

verified by byte-comparisons in the window, although
there are some shortcuts used to simplify this.

• The “Prev” chain can become quite long if there are
multiple matches concurrently in the window (think 32KB
of all 0’s).

• Four parameters are specified to limit the time spent
creating / searching / maintaining the hash tables to an
acceptable level

Santa Clara, CA
August 2013

40

SW Parameter Tuning

GZIP SW defines the following parameters which
are specified by a command line input

Santa Clara, CA
August 2013

41

Parameter Description

good_length Reduce lazy search above this match length

max_lazy Do not perform lazy search above this match length

nice_length Quit search above this match length

max_chain Maximum length of hash chain to follow

GZIP SW Compression “Levels”
- Default is Level 6

Level Good
Length

Max
Lazy

Nice
Length

Max
Chain Mode Comments

0 0 0 0 0 Raw/Store Apply Format
1 4 4 8 4

Static
Huffman

No Lazy
Matches 2 4 5 16 8

3 4 6 32 32

4 4 4 16 16

Dynamic
Huffman Lazy Matches

5 8 16 32 32

6 8 16 128 128

7 8 32 128 256

8 32 128 258 1024

9 32 258 258 4096

Santa Clara, CA
August 2013

42

GZIP Functional Block Diagram

 Input
Data

Output
Data

GZIP

LZ77 Search
Engine Huffman Encoder

43

LLD
Tokens

Santa Clara, CA
August 2013

LZ77 HW Search Engines

Two common approaches:
 Hash Based

• Traditional Implementation – History stored in buffer(s)
• Logic finds the longest match by stepping through a hash table
• Limits on length of search within each history required
• Multiple histories allow parallel searches

 Systolic Array Based

• History stored in hardware registers
• Hardware priority encoder locates longest match
• Fast, deterministic operation (No Hashing / Hash Chains)

44

Santa Clara, CA
August 2013

Hash Based Search Engine
 – Functional Block Diagram

 Input
Data

Near
Distance
Matcher

Output Data
(LLD)

Look Ahead
Buffer and

Byte
Alignment

Output Formation

History n History 0

Hash
FCN …

Hash
Table

45

Santa Clara, CA
August 2013

Systolic Array Search Engine
 – Functional Block Diagram

Mat
ch 3

Shif
t

reg

Mat
ch 3

Shif
t

reg

Mat
ch 3

Shif
t

reg

Mat
ch 3

Shif
t

reg

Mat
ch 3

Shif
t

reg

Mat
ch 3

Shif
t

reg

Mat
ch 3

Shif
t

reg

Mat
ch 3

Shif
t

reg

Mat
ch 3

Shif
t

reg

Mat
ch 3

Shif
t

reg

Mat
ch 3

Shif
t

reg

Mat
ch 3

Shif
t

reg

Mat
ch 3

Shif
t

reg

Mat
ch 3

Shif
t

reg

Mat
ch 3

Shif
t

reg

Mat
ch 3

Shif
t

reg

8 :3
enc

8 :3
enc

8 :3
enc

8 :3
enc

8 :3
enc

8 :3
enc

8 :3
enc

8 :3
enc

8 :3
enc

8 :3
enc

8 :3
enc

8 :3
enc

8 :3
enc

8 :3
enc

8 :3
enc

8 :3
enc

8 :3
enc

8 :3
enc

Mat
ch 3

Shif
t

reg

Mat
ch 3

Shif
t

reg

Mat
ch 3

Shif
t

reg

Mat
ch 3

Shif
t

reg

Mat
ch 3

Shif
t

reg

8 :3
enc

8 :3
enc

8 :3
enc

8 :3
enc

8 :3
enc

8 :3
enc

8 :3
enc

8 :3
enc

4096 : 512

512 : 64

64 : 8

8 : 1

Controller

Length/Literal

Distance

Data
4096x8 shift register
4K History Window

Priority Encoder Tree

Priority Reduction

Match 3

Shift
Register

8 :3
encoder

46
Santa Clara, CA
August 2013

HW Huffman Encoders

Two Huffman Encoder implementations for Deflate:

 Static Huffman only
• Trivially small, simple, low latency
• Encodes all blocks as “Static Huffman”, so compression ratio is compromised
• This is what existing industry players usually offer

 Dynamic Huffman (includes static encoding capability)
• Derives optimum Huffman code, creates “Dynamic Huffman”

blocks.
• Options allow selection of smallest size between dynamic

Huffman, static Huffman, or stored mode. No compromises –
always produces highest possible compression ratio output for a
given search engine.

• Numerous run time options to help user logic:
– Concatenate output blocks
– Raw buffer management
– Output byte alignment (ZFLUSH) capability
– Various tuning capabilities – see user guide

47
Santa Clara, CA
August 2013

Dynamic Huffman Encoding Engine
 – Functional Block Diagram (simplified)

 Input
Data

LLD
Histo”ram”

Output
 Data

LLD Buffer
Ram

Code Generator

Heap
Rams

Tree
Rams

Huffman
Encoder

Input
CTRL

Heap
Map

48
Santa Clara, CA
August 2013

GUNZIP Functional Block Diagram
Data CTRL

Huffman
Decoders

History Controller History
Memory

16 2

Output Formatter &
CRC Engine

Header Data Output Data

CRC
&

Size

49
Santa Clara, CA
August 2013

Agenda

• Background, Definitions, & Context
• Data Compression Overview
• Data Compression Algorithm Survey
• Deflate/Inflate (GZIP/GUNZIP) in depth
• Software Implementations
• HW Implementations
• Tradeoffs & Advanced Topics
• SSD Benefits and Challenges
• Conclusions

Santa Clara, CA
August 2013

50

Verification Datasets

Corpora are datasets used to benchmark compression
implementations
 Classic corpora

• Canterbury, Calgary, Large, Artificial, Miscellaneous
 Other corpora

• Protein, Lukas, Silesia (see http://www.data-compression.info)
• The “Govdocs1 Million Files Corpus” (see http://digitalcorpora.org)

– Several CPU-months of simulation time, many hours of FPGA emulation time

 Locally generated
• Special test cases which cannot be generated by GNU zip
• Arbitrary files taken from various *nix, Windows systems, mobile phones

 WWW and other content
• Video streams (e.g. youtube, news services), image and other near

incompressible data
• DVD files

 51 Santa Clara, CA
August 2013

http://www.data-compression.info/
http://digitalcorpora.org/

Parallel Processing Options

Standard Data Center Processors lack
Symmetric Multi-Processing (SMP)
Capabilities – Must pre-process
somehow to take advantage of multi-
core CPUs

Alternative Processor Architectures

(ARM, PPC, MIPS) can be more
capable…

PigZ is one alternative that attempts to

utilize multiple processor cores to
process a single stream of data

Software
Many more alternatives exist for

Parallel Processing with HW
Implementations of Deflate

LZ77 and Huffman Encoders can be
“Stacked” to process a stream in
parallel

• Slight decrease in CR – dataset
dependent but typically between
1% to 3%

• Linear scaling in Throughput

• Linear scaling in consumed
resources (area, power, etc).

Hardware

Santa Clara, CA
August 2013

52

GZIP Instance Stacking

Item Notes

Objectives:

Provide order of magnitude higher per stream throughput than achievable
via traditional techniques applied to individual instances (clock rate
enhancement, data bus widening, etc.)
Maximize Utilization of Huffman Encoding Engine

Throughput Enhancement Effectively n * x – i.e. 4 instances yield a ~ 4x throughput improvement

Compression Ratio
Impacts

Negligible – Current benchmarking shows ~ 0.33% to ~ 1.3 % C/R
degradation (depending upon configuration options) between 1 instance
and 2 stacked instances. No further C/R degradation observed for
additional stacked GZIP instances (beyond 2nd).

Resource (Gates, Memory)
Impacts

Scales Linearly – very little overhead for splitter and combiner logic.
Potential interconnect impact, depending on configuration options,
number of instances used, etc.

Standards Compatibility RFC Compliant – can decompress using standard GUNZIP IP or
Software

Santa Clara, CA
August 2013

53

 LLD
Sub_Stream

n

 LLD
Sub_Stream

2

LLD
Sub_Stream

1

Search Engine Instance Stacking
 - Typical Application

 Input
Data

Stream

GZIP

S
plitter &

 P
re

P
rocessing

54

LZ77 1 Sub_Stream
1

LZ77 2 Sub_Stream
2

LZ77 n Sub_Stream
n

C
om

biner &

H
uffm

an E
ncoder

Compressed
Output

Data Stream

Search Engine Instance stacking maximizes throughput of Huffman Encoder
Can also stack GZIP Instances containing stacked Search Engines

Santa Clara, CA
August 2013

GZIP Instance Stacking
 - Typical Application

 Input
Data

Stream

Stacked GZIP

S
plitter &

 P
re

P
rocessing

55

GZIP
1

 Sub_Stream
1

GZIP
2

 Sub_Stream
2

GZIP
n

 Sub_Stream
n

P
ost P

rocessing
&

 C
om

biner
Compressed

Output
Data Stream

Compressed
Sub_Stream

1
 Compressed
Sub_Stream

2

 Compressed
Sub_Stream

n

GZIP Instance stacking achieves order of magnitude throughput improvements !
Examples – a GZIP Block with:

 8 stacked instances @ 4 Gb/s = 4 GB/s (32 Gb/s)
10 stacked instances @ 6.4 Gb/s = 8 GB/s (64 Gb/s)

An FPGA proof of concept which compresses at 124 Gb/s has been simulated…
Santa Clara, CA
August 2013

Parallel Processing Challenges

 Decompression: Equivalent of parallel processing /
stacking for Inflate/GUNZIP not possible for standards
compatible files

 PigZ SW pre & post processing, but core inflate
processing CPU bound.
• Maybe OK for asymmetric systems

 HW Inflate engines optimized by design but ….

 Solution is addition of small amount of meta-data to

deflate blocks – but problematic for open systems
56 Santa Clara, CA

August 2013

State of Industry - Accelerators

• Under the hood in many flash subsystems
• Most current MIPS CPUs offer acceleration of

deflate/inflate. ARM & PPC?
• A Recent Intel Server Chipset platform supports

GZIP acceleration in HW.
• PCIe Cards (ComTech, Exar)
• Semiconductor IP also available to “roll your

own”
• Real time compression “appliances” available

• HW & SW approaches
Santa Clara, CA
August 2013

57

Implementation Challenges in SSDs

• 8 Bit Algorithms vs. 32/64 Bit Processors
• Processor Architectures:

• Lack of Symmetric Multi-Processing capability in some CPUs
limits single thread performance (ARM, PPC MIPS excluded)

• Errors in Data Compression Process (Soft errors)

• Lack of Deterministic Outcome on Compression - One
byte change in a block can promulgate large change in
compressed block size.

• Mismatch between standard formats and fixed sectors for
SSDs / HDDs

• Uncompressible Data can Grow in size
• Mismatch in output between HW & SW implementations

Santa Clara, CA
August 2013

58

Solutions to Challenges

Challenge Solution

Soft Errors Error Corrected Memories

Lack of Determinism in block size Force Deflate Block Generation on
desired boundaries

Lack of Determinism in throughput /
latency

Choose small windows, Static
Huffman, or Systolic Array LZ77
implementation

Data Expansion (Attempting to
compress encrypted or pre-
compressed data)

Select best of available Deflate Block
formats on a block by block basis

Lack of Equivalency between HW and
SW Implementations

SW Model that exactly matches HW
implementation

Santa Clara, CA
August 2013

59

Conclusions

• There is no perfect Data Compression Solution – all
are subject to tradeoffs

• To the extent possible – know your data and tune the
Data Compression Solution accordingly

• H/W and SW solutions optimize performance for
different parameters

• Using both HW and SW solutions in the same system
requires careful thought & planning

Santa Clara, CA
August 2013

60

Resources & References

 www.sandgate.com

 http://www.ics.uci.edu/~dan/pubs/DataCompression.html

 http://mattmahoney.net/dc/dce.html

 http://www.zlib.net/feldspar.html

 http://en.wikipedia.org/wiki/DEFLATE

 http://www.gzip.org/algorithm.txt

Santa Clara, CA
August 2013

http://www.ics.uci.edu/~dan/pubs/DataCompression.html
http://www.ics.uci.edu/~dan/pubs/DataCompression.html
http://www.ics.uci.edu/~dan/pubs/DataCompression.html
http://mattmahoney.net/dc/dce.html
http://www.zlib.net/feldspar.html
http://en.wikipedia.org/wiki/DEFLATE
http://www.gzip.org/algorithm.txt

Thank You!

Santa Clara, CA
August 2013

62

Supplemental Materials

Santa Clara, CA
August 2013

63

LZ77 Compression – Example

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Output
1 a wait
2 a a wait
3 a a c 0,a
4 a a c a 0,a
5 a a c a a 0,c
6 a a c a a c wait
7 a a c a a c a wait
8 a a c a a c a b 1,0,4
9 a a c a a c a b c wait
10 a a c a a c a b c a 0,b
11 a a c a a c a b c a b wait
12 a a c a a c a b c a b a 1,5,3
13 a a c a a c a b c a b a a wait
14 a a c a a c a b c a b a a a 0,a
15 a a c a a c a b c a b a a a c wait
16 a a c a a c a b c a b a a a c a wait
17 a a c a a c a b c a b a a a c a a wait
18 a a c a a c a b c a b a a a c a a b 1,0,5
19 a a c a a c a b c a b a a a c a a b 0,b

126 144

Input String Index

Santa Clara, CA
August 2013

64

LZ77 Compression – Example

● Steps 1-2: wait for 3 bytes to search for.

● Steps 3-5: Have 3 bytes, but no 3 byte match, so emit 1 char and try next input char.

● Step 6-7: Have 3B match, then 4

● Step 8: no 5B match on next char, so output 4B match and restart search with 1 new
byte (#8)

● Steps 9-10: wait for 3 bytes to search for; no 3B match, so emit 'b' and continue with
next byte

● Step 11: Have 3B match, wait to see if it gets bigger

● Step 12: Match ends, emit 3B, start w/1 new byte

● Step 13-14: Get 3 bytes, but no 3 byte match, so emit 1 char and try next input char.

● Step 15-17: Have 3,4,5B match

● Step 18: New byte breaks string match, emit 5B string & restart

● Step 19: End of input file, output remaining bytes as literal

● Results: input=18*8=144 bits, Out=6*9+3*24=126b, 12.5% smaller
Santa Clara, CA
August 2013

Lazy Match

●When scanning new input data to continue a match string,
normally at the first character that breaks the string match, the
search terminates and the whole match string is output and a new
search commences. This is called Greedy Match.

●What if there was a match starting @ N+m in the above case,
which continues and includes the newly added last byte, and in
fact would be a longer match than the one emitted?

●Lazy Match delays committing to output when a match breaks
for one or more additional characters, looking to see if a longer
match is possible. If a longer match is found, the longer match is
used and the initial character of the smaller match is emitted as a
literal.

Santa Clara, CA
August 2013

66

Greedy vs Lazy Match – Example

● Steps 1-14: roughly same for both cases, except “lazy wait” in step 8 that
doesn't pan out.

● Step 15, greedy match: Have 4 byte match, end of match, emit 4B match..
● Step 15, lazy match: Don't commit to 4B match, add one more byte and see

if we may have another 4B match – and we do.
● Step 16, lazy match: Search using next byte, find we now have a 5B match,

better than original 4B match, so emit 1st char as literal and continue search.
● Steps 17-18, lazy match: extend match to 6 then 7 bytes
● Step 19, lazy match: match ends, but hold off committing to output until we

see if still no match on next byte (lazy wait).
● Step 20, lazy match: no new 7B match, output original 7B match
● Step 21, lazy match: output 1B literal
● Step 22, lazy match: End of file, output remaining chars as literals
● Results: Greedy match=4.38% smaller vs . Lazy Match=13.75%

Santa Clara, CA
August 2013

67

Huffman Encoding (1)
Example:

Huffman Encode the string: ACBCABAADB

Frequency Table:
A 4
B 3
C 2
D 1

Build the Binary Tree:

A

B

C

D

0

1
10

11
110

111

Huffman Encode the original String:
0 110 10 110 0 10 0 0 111 10

ASCII Size = 10*8 = 80 Bits

Huffman Size = 19 Bits
Note the receiver needs BOTH the Huffman
String AND the encoding binary tree. This is
“Dynamic” Huffman. It adapts to and
minimally encodes the given dataset.

“Static Huffman” uses a pre-defined binary
tree with “typically good” encodings; this
eliminates the need to construct, send, and
reconstruct the tree with the encoded data,
as both sides can have a pre-provisioned
static tree, but it is not an optimal encoding.

Santa Clara, CA
August 2013

68

 GZIP Implementation

• Hashing and Hash Chaining – Implications
• SW implementations require RAM to implement the HASH

tables. This has a cost in die size for on-chip applications.
• Since the hash tables vary in length and search depth based

on the input data, the time to search varies greatly based on
the input data. This means the search time is non-
deterministic within limits set by the compression level.

• Systolic-Array (HW) based LZ77 implementations can
deliver a search result in a fixed-time per new character,
regardless of the input data and window, and it can be much
less than the worst-case hash-based approach.

 Santa Clara, CA
August 2013

69

	 Data Compression in Solid State Storage
	Acknowledgements
	Disclaimers
	Learning Objectives
	Agenda
	Definitions
	Definitions
	Definitions
	Compression Approaches
	Lossless Compression Techniques
	Lempel-Ziv Algorithm Family
	Agenda
	Deflate Algorithm:
	Deflate Processing
	Deflate/Zlib/GZIP Decoder Ring:
	Deflate Characteristics
	Deflate in Closed Systems
	RFC 1950 – Deflate Header Format
	RFC 1950 – Deflate Header Format
	RFC 1950 – ZLIB Header Format
	RFC 1952 – GZIP Header Format
	GZIP Functional Block Diagram
	LZ77 Compression - Overview
	LZ77 Compression - operation
	LZ77 Compression – Compression Rates
	LZ77 Compression – Example
	Lazy Match
	Greedy vs. Lazy Match
	Greedy vs. Lazy Match Example
	Slide Number 30
	Slide Number 31
	Deflate Huffman Encoding
	Agenda
	Implementation Approaches:
	Implantation Tradeoffs:
	Hashing
	Hashing Considerations
	SW GZIP Implementation
	SW GZIP Implementation
	SW GZIP Implementation
	SW Parameter Tuning
	GZIP SW Compression “Levels”�- Default is Level 6
	GZIP Functional Block Diagram
	LZ77 HW Search Engines
	Hash Based Search Engine� – Functional Block Diagram
	Systolic Array Search Engine � – Functional Block Diagram
	HW Huffman Encoders
	Dynamic Huffman Encoding Engine� – Functional Block Diagram (simplified)
	GUNZIP Functional Block Diagram
	Agenda
	Verification Datasets
	Parallel Processing Options
	GZIP Instance Stacking
	Search Engine Instance Stacking� - Typical Application
	GZIP Instance Stacking� - Typical Application
	Parallel Processing Challenges
	State of Industry - Accelerators
	Implementation Challenges in SSDs
	Solutions to Challenges
	Conclusions
	Resources & References
	Thank You!
	Supplemental Materials
	LZ77 Compression – Example
	LZ77 Compression – Example
	Lazy Match
	Greedy vs Lazy Match – Example
	Slide Number 68
	 GZIP Implementation

